Your name:
Instructor (please circle): Alex Barnett Michael Musty
Math 22 Summer 2017, Homework 6, due Fri August 4 Please show your work, and check your answers. No credit is given for solutions without work or justification.
(1) Let $T: \mathbb{R}^{5} \rightarrow \mathbb{R}^{3}$ be a linear transformation with standard matrix A.
(a) What are the possible values for the rank of A ?
(b) What are the possible values for the dimension of $\operatorname{Nul} A$?
(c) Suppose now that the T from above is also onto. What are the possible values for the dimension of Nul A ?
(d) Let $A=\left[\begin{array}{rrrrr}2 & 0 & -1 & 2 & 3 \\ 4 & 0 & -2 & 4 & 6 \\ 0 & 0 & 1 & -1 & 0\end{array}\right]$. Find bases for $\operatorname{Col} A$, $\operatorname{Row} A$, and $\operatorname{Nul} A$ (In this question you do not need to show your working.)
(2) Let $A=\left[\begin{array}{rrrr}-2 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 3\end{array}\right]$ and $B=\left[\begin{array}{rrrr}-2 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 3\end{array}\right]$.
(a) A and B have the same characteristic polynomial. Find this polynomial and explain what form and/or features that A and B have in common make the polynomial the same.
(b) From the previous part we see that each matrix has exactly 2 eigenvalues (call them λ_{1} and λ_{2} with $\lambda_{1}<\lambda_{2}$). Compute the dimensions of both eigenspaces for both of the matrices A and B. Use this information to fill in the table below. Be sure to include λ_{1} and λ_{2} in the table. It is not necessary to include all the computations involved, but please describe how you computed the dimensions.

matrix	dimension of $\lambda_{1}=$ eigenspace	dimension of $\lambda_{2}=$ eigenspace
A		
B		

(c) Find a basis for the λ_{2} eigenspace of B :
(3) Let $A=\left[\begin{array}{rr}7 & h \\ 2 & 11\end{array}\right]$.
(a) For what value(s) of h does A have an eigenvalue of (algebraic) multiplicity two?
(b) Let λ be the eigenvalue of (algebraic) multiplicity two from the previous part. Compute a basis for the λ eigenspace of A.
(c) Let $P=\left[\begin{array}{rr}-2 & 1 \\ 2 & 0\end{array}\right]$, and let $B=P^{-1} A P$ (with A defined by h from part (a)). Compute B and prove that B and A have the same eigenvalues.

