Your name:
Instructor (please circle): Alex Barnett Michael Musty
Math 22 Summer 2017, Homework 2, due Fri July 7 Please show your work, and check your answers. No credit is given for solutions without work or justification.
(1) Let h be a scalar, and consider the set of three vectors:

$$
\mathbf{v}_{1}=\left[\begin{array}{r}
3 \\
-2 \\
-4
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{r}
-6 \\
3 \\
9
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{r}
-3 \\
2(h-1) \\
7
\end{array}\right] .
$$

(a) With $h=1 / 2$, is the set linearly independent, and why? If not, give a dependence relation between $\mathbf{v}_{1}, \mathbf{v}_{2}$, and \mathbf{v}_{3}.
(b) With $h=0$, is the set linearly independent, and why? If not, give a dependence relation between $\mathbf{v}_{1}, \mathbf{v}_{2}$, and \mathbf{v}_{3}.
(2) Consider the following network flow diagram where the numbers indicate known flows, and $x_{1}, x_{2}, x_{3}, x_{4}$ indicate unknown flows on their respective edges.

(a) Find the reduced echelon form for the corresponding linear system.
(b) If a solution exists, write the parametric vector form of the solution set.
(c) Assume all flows are nonnegative. What constraint does this impose on x_{3} ?
(3) (a) Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear transformation defined by

$$
\begin{gathered}
T(\mathbf{x})=x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+x_{3} \mathbf{v}_{3}, \quad \text { with } \\
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right], \quad \mathbf{v}_{1}=\left[\begin{array}{r}
3 \\
-2 \\
5
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{r}
4 \\
-3 \\
1
\end{array}\right], \quad \text { and } \quad \mathbf{v}_{3}=\left[\begin{array}{l}
7 \\
1 \\
2
\end{array}\right] .
\end{gathered}
$$

Find a matrix A such that $T(\mathbf{x})=A \mathbf{x}$ for every \mathbf{x} in \mathbb{R}^{3}. Explain why your answer is correct.
(b) Let \mathbf{p} be any vector in \mathbb{R}^{n} and let \mathbf{v} be any nonzero vector in \mathbb{R}^{n}. Consider the line ℓ defined by the parametric equation

$$
\mathbf{x}=\mathbf{p}+t \mathbf{v}, \quad t \text { in } \mathbb{R}
$$

Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear transformation. Show that the image of ℓ under the map T is either a line in \mathbb{R}^{n} or a single point.

