
MATH22 - Linear Algebra with Applications

Exam II ANSWERS

August 1, 2007

1. (20 points) Tell whether each statement below is true or false. You need not show your

work.

(a) Any basis for P2 (the space of polynomials of degree ≤ 2) has a polynomial of each

possible degree, i.e. a polynomial of degree 0, degree 1, and degree 2.

(b) Every subspace of a finite dimensional vector space has a basis.

(c) If A is a 3× 5 matrix and rank A = 2, then dim Nul A = 3.

(d) The null space and the column space of a square matrix A can have a non-trivial inter-

section.

Answer:

(a) False. One basis of P2 is {1 + t + t2, t + t2, t2}, which has no polynomials of degree less

than 2.

(b) False. The subspace {0} has no basis.

(c) True. If the rank of A is 2, then the homogeneous equation Ax = 0 has 3 free variables,

and so dim Nul A = 3.

(d) True. If A =

[
1 −1

1 −1

]
, then

{[
1

1

]}
is a basis for both the null space and the column

space of A.



2. (20 points) Find bases for Nul A and Col A, where

A =

 3 1 5

3 −1 1

4 −1 2


Answer:

Since the third column of A is twice the second plus the first and since the first and second

are not multiples of one another, a basis for Col A is
 3

3

4

 ,

 1

−1

−1


 .

This also gives that the general solution to the homogeneous equation has the form x

2x

−x


for any arbitrary x ∈ R, and hence a basis for Nul A is

 1

2

−1


 .
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3. (15 points) Let A be an n × n matrix. Which of the following are equivalent to the

statement: A is an invertible matrix?

(a) A is a product of elementary matrices.

(b) Row A = Rn.

(c) Nul A = Rn.

(d) There is a nonzero vector in Rn perpendicular to Row A.

(e) There is an n× n matrix C such that AC = 0.

(f) The equation Ax = 0 has finitely many solutions for x ∈ Rn.

Answer:

(a) This is an equivalent statement. Recall this is how we found the algorithm to find the

inverse.

(b) This is an equivalent statement. If A is invertible, n = rank A = dim Row A.

(c) This is not an equivalent statement. If every vector in Rn is in the null space, then the

rank of A is 0 6= n.

(d) This is not an equivalent statement. If there is a nonzero vector perpendicular to Row

A, then Row A has dimension less than n, i.e. A does not have full rank.

(e) This is not an equivalent statement. In fact, it is true for non-invertible matrices as well

(put C = 0).

(f) This is an equivalent statement. If the homogeneous equation has finitely many solutions,

we have by Theorem 2 on page 24 that it has a unique solution, which is true if and only

if the matrix A is invertible.
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4. (15 points) Suppose A is a 4×4 matrix in echelon form. What is det A when the pivots

of A are:

(a) {−1,−2,−3}

(b) {1, 1, 4}

(c) {5,−1, 2, 3}

Answer:

(a) Since there are three pivots and A is 4× 4, det A = 0.

(b) Since there are three pivots and A is 4× 4, det A = 0.

(c) Since A is in echelon form, det A is the product of the pivots, so det A = −30.
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5. (15 points) Let D be the derivative operator on P4. What is the standard matrix for

D?

Answer:

For 0 ≤ n ≤ 4, the operator D takes tn to ntn−1 and the standard basis for P4 is {1, t, t2, t3, t4},
so the standard matrix for D is 

0 1 0 0 0

0 0 2 0 0

0 0 0 3 0

0 0 0 0 4

0 0 0 0 0

 .
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6. (15 points) Let T : R2 → R2 be a linear transformation such that

T (x) =

[
4 −1

2 2

]
x

for all x ∈ R2. If U is the unit square, what is the area of T (U)? (Recall that the unit square

is the square determined by the standard basis vectors e1 and e2.)

Answer:

The area of T (U) is given by∣∣∣∣∣ 4 −1

2 2

∣∣∣∣∣ {area of U} = (8− (−2)) {area of U} = 10 · 1 = 10.
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7. (20 points) Let W be a subspace of the finite dimensional vector space V such that

dim W < dim V . Prove that there exists a subspace W ′ of V such that V = W + W ′ and

W ∩W ′ = {0}. (Recall the sum W + W ′ is defined in problem 33 on page 225.)

Answer:

Proof. Pick a basis for W , say A = {v1,v2, . . . ,vn}, where dim W = n. Since this is

a linearly independent set of vectors in V , we may extend this set to a basis of V , say

B = {v1, . . . ,vn,vn+1, . . . ,vm}, where dim V = m > n. Then, let W ′ = Span C, where

C = {vn+1, . . . ,vm}. This is clearly a subspace, and by the work in problem 33 on page 225,

W + W ′ = V . If v ∈ W ∩W ′, then v can be written in two ways, namely

a1v1 + · · ·+ anvn = v = an+1vn+1 + · · ·+ amvm. (1)

Subtracting the right hand side from the left hand side, we see that this means

a1v1 + · · ·+ anvn − an+1vn+1 − · · · − amvm = 0. (2)

Since the basis B is linearly independent, we see that (2) has only the trivial solution

a1 = a2 = · · · = am = 0. Plugging this solution into (1), we see that v = 0. Thus,

W ∩W ′ = {0}, and the statement is proven.
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8. (25 points) Let

A =

{[
1

1

]
,

[
2

−1

]}

B =

{[
1

0

]
,

[
0

1

]}

C =

{[
−2

3

]
,

[
1

1

]}
.

(a) Write the vector

[
−1

1

]
B

in A -coordinates, then in C -coordinates.

(b) If [x]C =

[
x1

x2

]
, find a matrix expression for x in A -coordinates.

Answer:

(a) We have

P
C←B

=

[
−2 1

3 1

]−1

=

[
−1

5
1
5

3
5

2
5

]
and

P
A←B

=

[
1 2

1 −1

]−1

=

[
1
3

2
3

1
3
−1

3

]
.

Applying these change of coordinate matrices, we have[
−1

1

]
B

=

[
1
3

−2
3

]
A

=

[
2
5

−1
5

]
C

.

(b) Here,

P
A←C

= P
A←B

P
B←C

=

[
1
3

2
3

1
3
−1

3

][
−2 1

3 1

]
=

[
4
3

1

−5
3

0

]
,

and so if [x]C =

[
x1

x2

]
,

[x]A =

[
4
3

1

−5
3

0

][
x1

x2

]
=

[
4
3
x1 + x2

−5
3
x1

]
.
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9. (25 points) Suppose T : R2 → R2 is linear and that T

([
1

1

])
=

[
−1

2

]
and

T

([
0

1

])
=

[
1

2

]
. Find T−1

([
2

3

])
and T−1

([
1

1

])
.

Answer:

It is given that T (e2) =

[
1

2

]
, and we have

T (e1) = T

([
1

1

]
−

[
0

1

])
= T

([
1

1

])
− T

([
0

1

])
=

[
−1

2

]
−

[
1

2

]
=

[
−2

0

]
.

From this, we can conclude that

T (x) =

[
−2 1

0 2

]
x

for all x ∈ R2. Thus,

T−1(x) = −1

4

[
2 −1

0 −2

]
x

and plugging in the two values for x we see

T−1

([
2

3

])
=

[
−1

4
3
2

]
and T−1

([
1

1

])
=

[
−1

4
1
2

]
.

9



10. (30 points) Let V be the vector space of all functions f : R → R. For each of the

following subsets, either prove that the subset is a subspace of V or give a reason why it is

not.

(a) The functions f such that f(1) = f(2).

(b) The functions f such that f(−x) = −f(x).

(c) The functions f such that f(1) = f(2) + 1.

Answer:

(a) The zero function is an element of this set as f(1) = f(2) = 0 for that function. If two

functions f and g are in the set, then

(f + g)(1) = f(1) + g(1) = f(2) + g(2) = (f + g)(2),

so f + g is in the set. Finally, if f(1) = f(2), then

(cf)(1) = cf(1) = cf(2) = (cf)(2)

for any real number c. Thus, this set is a subspace of V .

(b) This set is also known as the set of odd functions. The zero function is an odd function

as f(−x) = f(x) = 0 gives that −f(x) = 0. If f and g are odd functions, then

(f + g)(−x) = f(−x) + g(−x) = −f(x)− g(x) = −(f(x) + g(x)) = (−(f + g))(x).

For any real number c and any odd function f ,

(cf)(−x) = cf(−x) = c(−f(x)) = −cf(x) = (−cf)(x).

Thus, this set is also a subspace of V .

(c) This set is not a subspace as the zero function is not in the set.
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11. (0 points) Bonus: It can be shown that, as vector spaces, L(Rn, Rm) and Mm×n are

isomorphic, i.e. that there exists a bijection ϕ between them which satisfies

ϕ(cS + dT ) = cϕ(S) + dϕ(T ) (3)

for every S, T ∈ L(Rn, Rm) and every c, d ∈ R. Note, as a bijection, ϕ is both one-to-one

and onto and hence invertible. One way to find ϕ is to find its value on a basis and apply (3)

together with the properties of a basis to see that this determines the value of ϕ everywhere

else. In particular, ϕ sends a basis of L(Rn, Rm) to a basis of Mm×n. Use this information

(and one theorem from your book) to find a basis for L(Rn, Rm).

Answer:

By Theorem 10, page 83, every linear transformation T : Rn → Rm can be written as

T (x) = ATx for a unique m × n matrix AT and any vector x ∈ Rn. This gives a natural

bijection between the two vector spaces. Further, it is easy to show that

ϕ(cS + dT ) = AcS+dT = cAS + dAT

for any S, T ∈ L(Rn, Rm) with associated matrices AS and AT and any c, d ∈ R. Let Mi,j

be the m × n matrix with a 1 in the i, j-th position and 0’s elsewhere. This is clearly a

basis for Mm×n, so taking the transformations which correspond to these matrices under ϕ,

i.e. applying ϕ−1 to this set, gives a basis for L(Rn, Rm). In particular, if Ti,j is the linear

transformation for which Ti,j(x) = Mi,jx, then the set {Ti,j : 1 ≤ i ≤ m and 1 ≤ j ≤ n} is a

basis for L(Rn, Rm). Ti,j can also be described as the unique linear transformation for which

Ti,j(ek) =

ej if k = i

0 otherwise.
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