MATH22 - Linear Algebra with Applications Exam I ANSWERS

July 11, 2007

1. (30 points) Define each of the following:
(a) a linearly independent set
(b) the span of a set of vectors
(c) an onto function

Answer:

(a) A set of vectors $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{n}}\right\}$ is linearly independent if the only solution for $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ in the equation

$$
x_{1} \mathbf{v}_{\mathbf{1}}+x_{2} \mathbf{v}_{\mathbf{2}}+\cdots+x_{n} \mathbf{v}_{\mathbf{n}}=\mathbf{0}
$$

is the trivial solution $\left(x_{1}, x_{2}, \ldots, x_{n}\right)=(0,0, \ldots, 0)$.
(b) The span of a set of vectors is the set of all linear combinations of the vectors in that set.
(c) An onto function is a function whose range and codomain are the same.
2. (30 points) Calculate the inverse of

$$
A=\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & -1 \\
-1 & 1 & -1
\end{array}\right]
$$

Answer:

$$
\begin{aligned}
& {\left[\begin{array}{ccc|ccc}
1 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & -1 & 0 & 1 & 0 \\
-1 & 1 & -1 & 0 & 0 & 1
\end{array}\right] \rightarrow_{R_{1}+R_{3} \rightarrow R_{3}}\left[\begin{array}{ccc|ccc}
1 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & -1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1
\end{array}\right] \rightarrow{ }_{-R_{2}+R_{3} \rightarrow R_{3}}^{\left[\begin{array}{ccc|ccc}
1 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & -1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & -1 & 1
\end{array}\right] \xrightarrow[\substack{R_{3}+R_{2} \rightarrow R_{2} \\
-R_{3}+R_{1} \rightarrow R_{1}}]{\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & 0 & 1 & -1 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & -1 & 1
\end{array}\right]}} \begin{array}{l}
{[}
\end{array}}
\end{aligned}
$$

so we have

$$
A^{-1}=\left[\begin{array}{ccc}
0 & 1 & -1 \\
1 & 0 & 1 \\
1 & -1 & 1
\end{array}\right]
$$

3. (30 points) Solve the following system:

$$
\begin{aligned}
x_{1}+x_{3} & =2 \\
x_{2}-x_{3} & =1 \\
-x_{1}+x_{2}-x_{3} & =0 .
\end{aligned}
$$

(Hint: Save yourself some time and trouble by using the result of \#2.)

Answer:

This system can be written in the form $A \mathbf{x}=\mathbf{b}$ as

$$
\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & -1 \\
-1 & 1 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right] .
$$

Noting that this coefficient matrix is the same as the matrix A in the previous problem, we have that

$$
\mathbf{x}=A^{-1} \mathbf{b}=\left[\begin{array}{ccc}
0 & 1 & -1 \\
1 & 0 & 1 \\
1 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]
$$

4. (30 points) Find the general solution of the following system:

$$
\begin{array}{rrl}
x_{1}-2 x_{2}+x_{3} & =0 \\
x_{2}+x_{3}-x_{4} & =1 .
\end{array}
$$

Answer:

Using an augmented matrix, we have

$$
\left[\begin{array}{ccccc}
1 & -2 & 1 & 0 & 0 \\
0 & 1 & 1 & -1 & 1
\end{array}\right] \rightarrow_{2 R_{2}+R_{1} \rightarrow R_{1}}\left[\begin{array}{ccccc}
1 & 0 & 3 & -2 & 2 \\
0 & 1 & 1 & -1 & 1
\end{array}\right] .
$$

This gives that the solution is

$$
\left\{\begin{array}{l}
x_{1}=2+2 x_{4}-3 x_{3} \\
x_{2}=1+x_{4}-x_{3} \\
x_{3} \text { is free } \\
x_{4} \text { is free. }
\end{array}\right.
$$

5. (40 points) Let A and B be $n \times n$ matrices. Prove: $(A-B)(A+B)=A^{2}-B^{2}$ if and only if A commutes with B.

Answer:

Proof. Let A and B be as given. We have that

$$
\begin{equation*}
(A-B)(A+B)=A A-B A+A B-B B=A^{2}-B^{2}+A B-B A \tag{1}
\end{equation*}
$$

If A and B commute, $A B-B A=0$, and (1) simplifies to $(A-B)(A+B)=A^{2}-B^{2}$. On the other hand, if A and B do not commute, $A B-B A \neq 0$, in which case

$$
(A-B)(A+B)-\left(A^{2}-B^{2}\right)=A B-B A \neq 0
$$

and so $(A-B)(A+B) \neq A^{2}-B^{2}$.
6. (40 points) TRUE/FALSE (You need not show your work on these problems):
(a) For $n \times n$ matrices A, B, and C,

$$
A(B+C)=B A+C A
$$

(b) If $A B=B A$ for the matrices A and B, then

$$
A^{T} B^{T}=B^{T} A^{T} .
$$

(c) $E=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 0\end{array}\right]$ is an elementary matrix.
(d) The mapping

$$
\begin{aligned}
T: & \mathbb{R}^{3}
\end{aligned} \rightarrow \mathbb{R}^{3} .
$$

is a linear transformation.
(e) If A is the standard matrix for the linear transformation of \mathbb{R}^{2} which maps an arbitrary vector $\mathbf{x} \mapsto-2 \mathbf{x}$, then $A_{12}=0$.

Answer:

(a) False. $A(B+C)=A B+A C \neq B A+C A$ in general.
(b) True. If $A B=B A$, then $(A B)^{T}=(B A)^{T}$, i.e. $B^{T} A^{T}=A^{T} B^{T}$.
(c) False. To get this matrix from I_{3} requires at least 2 row operations, while an elementary matrix is derived from a single operation.
(d) True.

$$
\begin{aligned}
T(c \mathbf{x}+d \mathbf{y}) & =T\left(\left[\begin{array}{c}
c x_{1}+d y_{1} \\
c x_{2}+y_{2} \\
c x_{3}+d y_{3}
\end{array}\right]\right)=\left[\begin{array}{c}
c x_{1}+d y_{1} \\
c x_{2}+y_{2} \\
-c x_{3}-d y_{3}
\end{array}\right]=c\left[\begin{array}{c}
x_{1} \\
x_{2} \\
-x_{3}
\end{array}\right]+d\left[\begin{array}{c}
y_{1} \\
y_{2} \\
-y_{3}
\end{array}\right] \\
& =c T(\mathbf{x})+d T(\mathbf{y}) .
\end{aligned}
$$

(e) True. The standard matrix for this transformation is $\left[\begin{array}{cc}-2 & 0 \\ 0 & -2\end{array}\right]$.
7. (0 points) BONUS: Show that the transpose of an elementary matrix is an elementary matrix.

Answer:

Looking at the three types of operations represented by an elementary matrix E, we have:
(a) Multiplying a row by a nonzero constant. Here, the transpose of E is the same as the matrix itself, so it is clearly elementary.
(b) Switching one row with another. Here, the transpose of E is again the same as the matrix itself, so once again, it is elementary.
(c) Adding a nonzero multiple of one row to another. Suppose we add $k R_{i}+R_{j} \rightarrow R_{j}$ for some $k \neq 0$. The resulting elementary matrix E has the same elements as the identity matrix with the lone exception that $E_{j i}=k \neq 0$. Taking the transpose creates a matrix F with the same elements as the identity matrix with the lone exception that $F_{i j}=k$. However, this is the same as the elementary matrix obtained by the operation $k R_{j}+R_{i} \rightarrow R_{i}$, and so $F=E^{T}$ is elementary as well.

