# MATH22 - Linear Algebra with Applications Final Exam ANSWERS 

August 28, 2007

1. (25 points) True or False. You need not show your work.
(a) For any integers $m$ and $n, L\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$ is a finite dimensional vector space.
(b) If $A$ is an $n \times n$ matrix, $\operatorname{dim} \operatorname{Col} A+\operatorname{dim} \operatorname{Row} A^{T}=n$.
(c) If $A=A^{T}$, every eigenvalue of $A$ has multiplicity $\geq 2$.
(d) A real, square matrix is orthogonal if and only if its rows are mutually orthogonal, normal vectors.
(e) Every square matrix is similar to its transpose.

Answer:
(a) True, as we saw in the bonus problem for Exam II, where we showed it has dimension $m n$.
(b) False. If $A$ is invertible, each part of the left hand side of the equation is equal to $n$, for a sum of $2 n$.
(c) False. Try $A=[1]$.
(d) True, as shown in class.
(e) True, since the transpose has the same characteristic equation.
2. (45 points) Let $A=\left[\begin{array}{cccc}1 & 2 & 0 & 3 \\ -1 & 1 & -3 & -3 \\ 0 & 2 & -2 & 0 \\ 2 & 4 & 0 & 6\end{array}\right]$.
(a) Find a basis for $\operatorname{Nul} A$.
(b) Use the result of part (a) to write $\mathbf{v}=\left[\begin{array}{c}6 \\ 12 \\ -6 \\ 12\end{array}\right]$ as $\mathbf{v}_{1}+\mathbf{v}_{2}$ where $\mathbf{v}_{1} \in \operatorname{Nul} A$ and $\mathbf{v}_{2} \in \operatorname{Row} A$.

## Answer:

(a) Setting up the augmented matrix for the homogeneous system,

$$
\begin{aligned}
& {\left[\begin{array}{ccccc}
1 & 2 & 0 & 3 & 0 \\
-1 & 1 & -3 & -3 & 0 \\
0 & 2 & -2 & 0 & 0 \\
2 & 4 & 0 & 6 & 0
\end{array}\right] \underset{\substack{R_{1}+R_{2} \rightarrow R_{2} \\
-2 R_{1}+R_{4} \rightarrow R_{4}}}{ }\left[\begin{array}{ccccc}
1 & 2 & 0 & 3 & 0 \\
0 & 3 & -3 & 0 & 0 \\
0 & 2 & -2 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \quad \rightarrow{ }_{\frac{1}{3} R_{2} \rightarrow R_{2}}} \\
& {\left[\begin{array}{ccccc}
1 & 2 & 0 & 3 & 0 \\
0 & 1 & -1 & 0 & 0 \\
0 & 2 & -2 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \rightarrow_{-R_{2}+R_{3} \rightarrow R_{3}}\left[\begin{array}{ccccc}
1 & 2 & 0 & 3 & 0 \\
0 & 1 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \rightarrow_{-2 R_{2}+R_{1} \rightarrow R_{1}}} \\
& {\left[\begin{array}{ccccc}
1 & 0 & 2 & 3 & 0 \\
0 & 1 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right],}
\end{aligned}
$$

so the general solution to the homogeneous equation is

$$
\begin{cases}x_{1} & =-2 x_{3}-3 x_{4} \\ x_{2} & =x_{3} \\ x_{3}, x_{4} & \text { are free. }\end{cases}
$$

Thus, a basis for $\operatorname{Nul} A$ is

$$
\left\{\left[\begin{array}{c}
-2 \\
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-3 \\
0 \\
0 \\
1
\end{array}\right]\right\}
$$

(b) To do orthogonal projection onto Nul $A$, we need an orthogonal basis for Nul $A$. We may take $\mathbf{x}_{1}=\left[\begin{array}{c}-2 \\ 1 \\ 1 \\ 0\end{array}\right]$, and put

$$
\mathbf{x}_{2}=\left[\begin{array}{c}
-3 \\
0 \\
0 \\
1
\end{array}\right]-\frac{\left[\begin{array}{c}
-3 \\
0 \\
0 \\
1
\end{array}\right] \cdot\left[\begin{array}{c}
-2 \\
1 \\
1 \\
0
\end{array}\right]}{\left[\begin{array}{c}
-2 \\
1 \\
1 \\
0
\end{array}\right] \cdot\left[\begin{array}{c}
-2 \\
1 \\
1 \\
0
\end{array}\right]}\left[\begin{array}{c}
-2 \\
1 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
-1 \\
-1 \\
-1 \\
1
\end{array}\right] .
$$

Then, since Row $A=(\operatorname{Nul} A)^{\perp}$,

$$
\left.\begin{array}{rl}
\mathbf{v}_{1}=\operatorname{proj}_{\mathrm{Nul} A} \mathbf{v} & \left.=\frac{\left[\begin{array}{c}
-2 \\
1 \\
1 \\
0
\end{array}\right] \cdot\left[\begin{array}{c}
6 \\
12 \\
-6 \\
12
\end{array}\right]}{\left[\begin{array}{c}
-2 \\
1 \\
1 \\
0
\end{array}\right] \cdot\left[\begin{array}{c}
-2 \\
1 \\
1 \\
0
\end{array}\right]}\left[\begin{array}{c}
2 \\
1 \\
0
\end{array}\right]+\frac{\left[\begin{array}{c}
-1 \\
-1 \\
-1 \\
1
\end{array}\right] \cdot\left[\begin{array}{c}
6 \\
12 \\
-6 \\
12
\end{array}\right]}{[1} \begin{array}{c}
-1 \\
1
\end{array}\right] \cdot\left[\begin{array}{c}
-1 \\
-1 \\
-1 \\
1
\end{array}\right] \\
-1 \\
-1 \\
-1 \\
1
\end{array}\right] .
$$

Then,

$$
\mathbf{v}_{2}=\mathbf{v}-\mathbf{v}_{1}=\left[\begin{array}{c}
6 \\
12 \\
-6 \\
12
\end{array}\right]-\left[\begin{array}{c}
2 \\
-1 \\
-1 \\
0
\end{array}\right]=\left[\begin{array}{c}
4 \\
13 \\
-5 \\
12
\end{array}\right]
$$

3. (30 points) Suppose there are three candidates in each presidential election: a Democrat (D), Independent (I), and a Republican (R). An incumbent representative has a $50 \%$ chance of re-election. A Democratic challenger has a $40 \%$ chance of unseating an independent incumbent and a $30 \%$ chance of winning election against a Republican incumbent. An Independent has a $20 \%$ chance of being elected over a Democratic incumbent.
(a) Draw a transition diagram to represent this situation.
(b) Give a transition matrix that represents this situation.
(c) If the current president is a Republican, what are the probabilities that it will have a Democrat, Independent, or Republican in the next election? Two elections from now?

## Answer:

(a) The transition diagram is

(b) The transition matrix is

$$
P=\begin{gathered}
\\
D \\
I \\
R
\end{gathered} \begin{array}{ccc}
D & I & R \\
{\left[\begin{array}{ccc}
.5 & .4 & .3 \\
.2 & .5 & .2 \\
.3 & .1 & .5
\end{array}\right] .}
\end{array}
$$

(c) We have

$$
S_{0}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \begin{gathered}
D \\
I \\
R
\end{gathered}
$$

SO

$$
S_{1}=P S_{0}=\left[\begin{array}{lll}
.5 & .4 & .3 \\
.2 & .5 & .2 \\
.3 & .1 & .5
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
.3 \\
.2 \\
.5
\end{array}\right] \begin{gathered}
D \\
I \\
R
\end{gathered}
$$

and

$$
S_{2}=P S_{1}=\left[\begin{array}{lll}
.5 & .4 & .3 \\
.2 & .5 & .2 \\
.3 & .1 & .5
\end{array}\right]\left[\begin{array}{l}
.3 \\
.2 \\
.5
\end{array}\right]=\left[\begin{array}{l}
.38 \\
.26 \\
.36
\end{array}\right] \begin{aligned}
& D \\
& I \\
& R
\end{aligned} .
$$

4. (20 points) Show that the set of symmetric $n \times n$ matrices is a subspace of $M_{n \times n}$. (Recall $A$ is symmetric if $A=A^{T}$.)

## Answer:

Let $S=\left\{A \in M_{n \times n}: A=A^{T}\right\}$. Since $0=0^{T}, 0 \in S$. If $A, B \in S$, then

$$
(A+B)^{T}=A^{T}+B^{T}=A+B,
$$

so $A+B \in S$. If $A \in S$ and $c \in \mathbb{R}$,

$$
(c A)^{T}=c A^{T}=c A
$$

so $c A \in S$. Thus, $S$ is a subspace of $M_{n \times n}$.
5. (30 points) Prove $\left(a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}\right)^{2} \leq n\left(a_{1}^{4}+a_{2}^{4}+\cdots+a_{n}^{4}\right)$ for any integer $n$ and any $a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{R}$. (Hint: Use Cauchy-Schwarz.)

## Answer:

Let $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{n}$, with $\mathbf{u}=\left[\begin{array}{c}1 \\ 1 \\ \vdots \\ 1\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{c}a_{1}^{2} \\ a_{2}^{2} \\ \vdots \\ a_{n}^{2}\end{array}\right]$. Then, by Cauchy-Schwarz,

$$
\left(a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}\right)=\mathbf{u} \cdot \mathbf{v} \leq\|\mathbf{u}\|\|\mathbf{v}\|=\sqrt{n} \sqrt{a_{1}^{4}+a_{2}^{4}+\cdots+a_{n}^{4}}
$$

Squaring both sides gives the result.
6. (25 points) Let $S: \mathbb{P}_{4} \rightarrow \mathbb{P}_{5}$ be the linear operator for which $S(f)=\int_{0}^{t} f(x) d x$. Find the matrix representation for $S$ with respect to the standard bases for $\mathbb{P}_{4}$ and $\mathbb{P}_{5}$.

## Answer:

Since $S\left(t^{n}\right)=\frac{t^{n+1}}{n}$ and since the standard bases in question are $\beta_{4}=\left\{1, t, t^{2}, t^{3}, t^{4}\right\}$ and $\beta_{5}=\left\{1, t, t^{2}, t^{3}, t^{4}, t^{5}\right\}$, the standard matrix for $S$ is:

$$
\left[[S(1)]_{\beta_{5}}\left[\begin{array}{llll} 
\\
& {[S(t)]_{\beta_{5}}} & {\left[S\left(t^{2}\right)\right]_{\beta_{5}}} & {\left[S\left(t^{3}\right)\right]_{\beta_{5}}}
\end{array}\left[S\left(t^{4}\right)\right]_{\beta_{5}}\right]=\left[\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & \frac{1}{2} & 0 & 0 & 0 \\
0 & 0 & \frac{1}{3} & 0 & 0 \\
0 & 0 & 0 & \frac{1}{4} & 0 \\
0 & 0 & 0 & 0 & \frac{1}{5}
\end{array}\right] .\right.
$$

7. (25 points) Find the general solution for the equation $\left[\begin{array}{ccc}0 & 1 & -4 \\ 5 & 4 & 9 \\ 2 & 2 & 2\end{array}\right] \mathbf{x}=\left[\begin{array}{l}0 \\ 5 \\ 2\end{array}\right]$.

## Answer:

Setting up the augmented matrix, we see

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
0 & 1 & -4 & 0 \\
5 & 4 & 9 & 5 \\
2 & 2 & 2 & 2
\end{array}\right] \rightarrow \rightarrow_{R_{1} \leftrightarrow R_{3}}\left[\begin{array}{cccc}
2 & 2 & 2 & 2 \\
5 & 4 & 9 & 5 \\
0 & 1 & -4 & 0
\end{array}\right]}
\end{aligned} \rightarrow_{\frac{1}{2} R_{1} \rightarrow R_{1}}\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & -1 & 4 \\
0 & 1 & -4 \\
0
\end{array}\right] \rightarrow \rightarrow_{-R_{2} \rightarrow R_{2}}\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
5 & 4 & 9 & 5 \\
0 & 1 & -4 & 0
\end{array}\right] \rightarrow_{-5 R_{1}+R_{2} \rightarrow R_{2}}
$$

so the general solution is

$$
\left\{\begin{array}{l}
x_{1}=1-5 x_{3} \\
x_{2}=4 x_{3} \\
x_{3} \quad \text { is free. }
\end{array}\right.
$$

Equivalently, we may write the general solution as

$$
\mathbf{x}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+t\left[\begin{array}{c}
-5 \\
4 \\
1
\end{array}\right]
$$

where $t$ varies over the real numbers.
8. (40 points)
(a) Find all eigenvalues and eigenvectors of $A=\left[\begin{array}{ccc}1 & 1 & -1 \\ 1 & -2 & 0 \\ 0 & -3 & 1\end{array}\right]$.
(b) Use part (a) to write $A=P D P^{-1}$ for $P$ a $3 \times 3$ invertible matrix and $D$ a $3 \times 3$ diagnonal matrix. (You need not compute $P^{-1}$.)

## Answer:

(a) We have

$$
\begin{aligned}
\operatorname{det}(\lambda I-A) & =\left|\begin{array}{ccc}
\lambda-1 & -1 & 1 \\
-1 & \lambda+2 & 0 \\
0 & 3 & \lambda-1
\end{array}\right| \\
& =(\lambda-1)(\lambda+2)(\lambda-1)-3-(\lambda-1) \\
& =\left(\lambda^{2}-2 \lambda+1\right)(\lambda+2)-3-\lambda+1 \\
& =\lambda^{3}-2 \lambda^{2}+\lambda+2 \lambda^{2}-4 \lambda+2-3-\lambda+1 \\
& =\lambda^{3}-4 \lambda,
\end{aligned}
$$

so the eigenvalues are $\lambda=0, \pm 2$.

For $\lambda=0:$ We can row reduce to see that

$$
\left[\begin{array}{cccc}
1 & 1 & -1 & 0 \\
1 & -2 & 0 & 0 \\
0 & -3 & 1 & 0
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 0 & -\frac{2}{3} & 0 \\
0 & 1 & -\frac{1}{3} & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

so we may choose the eigenvector

$$
\mathbf{v}_{0}=\left[\begin{array}{l}
2 \\
1 \\
3
\end{array}\right]
$$

For $\lambda=2$ :We can row reduce to see that

$$
\left[\begin{array}{cccc}
1 & -1 & 1 & 0 \\
-1 & 4 & 0 & 0 \\
0 & 3 & 1 & 0
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 0 & \frac{4}{3} & 0 \\
0 & 1 & \frac{1}{3} & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

so we may choose the eigenvector

$$
\mathbf{v}_{2}=\left[\begin{array}{c}
-4 \\
-1 \\
3
\end{array}\right]
$$

For $\lambda=-2$ :We can row reduce to see that

$$
\left[\begin{array}{cccc}
-3 & -1 & 1 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 3 & -3 & 0
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

so we may choose the eigenvector

$$
\mathbf{v}_{-2}=\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right] .
$$

(b) From part (a), we may put

$$
P=\left[\begin{array}{lll}
\mathbf{v}_{-2} & \mathbf{v}_{0} & \mathbf{v}_{2}
\end{array}\right]
$$

and

$$
D=\left[\begin{array}{ccc}
-2 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

Thus,

$$
A=P D P^{-1}=\left[\begin{array}{ccc}
0 & 2 & -4 \\
1 & 1 & -1 \\
1 & 3 & 3
\end{array}\right]\left[\begin{array}{ccc}
-2 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 2
\end{array}\right]\left[\begin{array}{ccc}
0 & 2 & -4 \\
1 & 1 & -1 \\
1 & 3 & 3
\end{array}\right]^{-1}
$$

9. (0 points) BONUS: Name and describe two of the applications of linear algebra we saw in this course.

## Answer:

Any of the topics covered are acceptable, including, among others,
(a) covariance-based facial recognition
(b) Google's PageRank algorithm
(c) network flow (traffic, electric current, etc.)
(d) balancing chemical equations
(e) cryptography
(f) linear programming
(g) Leontief Input-Output analysis
(h) magic squares
(i) computer graphics
(j) modeling a stochastic system (card trick, migration, etc.)

