Math 22 Lin Alg: Homework 3

due Wed Jul 12 ... but best if do relevant questions after each lecture

Required problems from David Lay book: (remember to show your working/reasoning-answers without explanation will not receive a high score!) You may want to warm up with the practise problems, or odd problems nearest the assigned ones.
1.8: Goals: Know the properties of a linear transformation; recognize geometric properties of some linear transformations.

21,24 [this is one of your first proofs: use the defining properties of linear transformations in conjunction with information from the question to prove the final sentence], 30 [another proof-please try to explain clearly but briefly].
1.9: Goals: Produce a matrix equation for a given linear transformation; understand one-to-one and onto transformations and their relationship with the number of solutions.
2,8 [hint: follow what happens to the unit vectors], $22,32,35$ [hint: use results of questions 31,32].
1.10: (last 2 pp only) Goals: Be able to convert a problem described in words into a linear difference equation, and use it to compute a couple of iterations forward in time.
10.
A. Suppose each year 10% moves from city to suburbs (90% stays in city) and 20% moves from suburbs to city (80% stays in suburbs). Set up the migration matrix. In 2001 the populations were 500,000 in the city and 500,000 in the suburbs. What were the populations in the previous year? [Hint: work in millions, i.e. use 0.5 instead of 500,000 , etc. Also multiply your augmented matrix by a convenient factor]
2.1: Goals: Know how to multiply matrices (when the product is defined), properties of matrix multiplication, and the transpose of a matrix.
$2,16,17,25,33$ [trickier one - try and use as simple notation as possible].
2.2: Goals: Know how to solve a system of linear equations using the inverse of a matrix, understand the relationship between row operations and elementary matrices, be able to compute the inverse of a matrix (learn the formula for the inverse of a 2 -by- 2 matrix).
7, 9 [read carefully!]

