Final Exam Topics

Math 22, Spring 2007
Sections covered: $1.1-1.5,1.7-1.9,2.1-2.3,3.1,3.2,4.1-4.7,5.1-5.4,6.1-6.3,6.5,6.6$
What have we talked about this term? Let me try to organize the concepts.

- Linear equations
- Vocabulary: coefficient, system, solution (set), equivalence, (in)consistency, (non)homogeneous, trivial solution
- Methods: allowed operations, conversion to a matrix-vector product, conversion to an augmented or coefficient matrix
- Theory: possible numbers of solutions
- Vectors
- Basic: equality, sum, scalar multiple, geometric interpretation, linear combinations, weights
- Sets of vectors: linear (in)dependence, span, closure under sum and scalar multiple, representing sets of vectors as parametric vector equations
- Main example: \mathbb{R}^{n} and subspaces thereof
- Other significant examples: $\mathbb{P}, \mathbb{P}_{n}, M_{m \times n}$
- Showing subspace: image set or preimage set of a subspace under a linear transformation is a subspace; the span of a set of vectors is a subspace; showing closure and containment of $\mathbf{0}$ (or closure and nonemptiness) proves a subset is a subspace
- Bases: dimension, coordinate vectors, change of basis, relationship between dimension, spanning, and linear independence
- Dot product: length/norm, unit vector, normalization, distance
- Orthogonality: orthogonal complement, orthogonal set/basis, orthonormal set/basis, orthogonal projection, projections as approximations
- Least squares method: how to find a best-fit line for a set of points
- Matrices
- Basics: size, notation for entries, main diagonal, equality, sum, scalar multiple, product with a vector or another matrix (and how matrix multiplication's properties differs from standard arithmetic multiplication)
- Relation to linear equations: coefficient matrix, augmented matrix, row reduction, row equivalence, (reduced) echelon form, pivot position/column, leading entry/variable, free variable
- Inverses: inverse of a product, inverses for 2×2 matrices, general procedure for finding inverses, connection to linear transformations, equivalent conditions to invertibility
- Determinants: cofactor expansion, relation to invertibility, determinants for triangular matrices
- Associated vector spaces: row space, column space, null space; rank, finding bases, relation to invertibility
- Linear Transformations
- Vocabulary: domain, codomain, range, image, preimage, one-to-one, onto, linear
- Matrix transformations: finding matrices for transformations, matrices for non- \mathbb{R}^{n} transformations via coordinate vectors, connection between transformation properties and properties of matrix columns as a set of vectors
- Eigenstuff
- Vocabulary: eigenvector, eigenvalue, eigenspace, characteristic function
- Similarity: preservation of eigenvalues, diagonalizability, interpretation of diagonalizability with respect to bases and linear transformations
- Multiplicity: relationship between algebraic (root of characteristic function) and geometric (dimension of eigenspace) and what that means for diagonalizability
- Things to skip
- calculation of determinants by row reduction
- all mentions of difference equations (chp 5 in particular has these at the ends of sections)
- last segment of $\S 6.1$
- last segment of $\S 6.5$
- all but first segment of $\S 6.6$

