Final Exam Topics Math 22, Spring 2007

Sections covered: 1.1–1.5, 1.7–1.9, 2.1–2.3, 3.1, 3.2, 4.1–4.7, 5.1–5.4, 6.1–6.3, 6.5, 6.6 What have we talked about this term? Let me try to organize the concepts.

- Linear equations
 - Vocabulary: coefficient, system, solution (set), equivalence, (in)consistency, (non)homogeneous, trivial solution
 - Methods: allowed operations, conversion to a matrix-vector product, conversion to an augmented or coefficient matrix
 - Theory: possible numbers of solutions
- \bullet Vectors
 - Basic: equality, sum, scalar multiple, geometric interpretation, linear combinations, weights
 - Sets of vectors: linear (in)dependence, span, closure under sum and scalar multiple, representing sets of vectors as parametric vector equations
 - Main example: \mathbb{R}^n and subspaces thereof
 - Other significant examples: \mathbb{P} , \mathbb{P}_n , $M_{m \times n}$
 - Showing subspace: image set or preimage set of a subspace under a linear transformation is a subspace; the span of a set of vectors is a subspace; showing closure and containment of $\mathbf{0}$ (or closure and nonemptiness) proves a subset is a subspace
 - Bases: dimension, coordinate vectors, change of basis, relationship between dimension, spanning, and linear independence
 - Dot product: length/norm, unit vector, normalization, distance
 - Orthogonality: orthogonal complement, orthogonal set/basis, orthonormal set/basis, orthogonal projection, projections as approximations
 - Least squares method: how to find a best-fit line for a set of points
- Matrices
 - Basics: size, notation for entries, main diagonal, equality, sum, scalar multiple, product with a vector or another matrix (and how matrix multiplication's properties differs from standard arithmetic multiplication)
 - Relation to linear equations: coefficient matrix, augmented matrix, row reduction, row equivalence, (reduced) echelon form, pivot position/column, leading entry/variable, free variable
 - Inverses: inverse of a product, inverses for 2×2 matrices, general procedure for finding inverses, connection to linear transformations, equivalent conditions to invertibility
 - Determinants: cofactor expansion, relation to invertibility, determinants for triangular matrices
 - Associated vector spaces: row space, column space, null space; rank, finding bases, relation to invertibility
- Linear Transformations
 - Vocabulary: domain, codomain, range, image, preimage, one-to-one, onto, linear

- Matrix transformations: finding matrices for transformations, matrices for non- \mathbb{R}^n transformations via coordinate vectors, connection between transformation properties and properties of matrix columns as a set of vectors
- Eigenstuff
 - Vocabulary: eigenvector, eigenvalue, eigenspace, characteristic function
 - Similarity: preservation of eigenvalues, diagonalizability, interpretation of diagonalizability with respect to bases and linear transformations
 - Multiplicity: relationship between algebraic (root of characteristic function) and geometric (dimension of eigenspace) and what that means for diagonalizability
- Things to skip
 - calculation of determinants by row reduction
 - all mentions of difference equations (chp 5 in particular has these at the ends of sections)
 - last segment of $\S 6.1$
 - last segment of $\S 6.5$
 - all but first segment of $\S 6.6$