Homework Assignment for §3.1-3.3
 Math 22, Spring 2007

1. Show $\operatorname{det}(E)=k$, where E is the $n \times n$ elementary matrix representing multiplication of row ℓ by k. That is, $E=\left[e_{i j}\right]$ is the $n \times n$ diagonal matrix with $e_{\ell \ell}=k$ and all other diagonal entries 1 .
2. Use cofactor expansion (not row reduction) to show that $\operatorname{det}(E)=-1$, where E is the $n \times n$ elementary matrix representing the interchange of rows k and ℓ. That is, for $E=\left[e_{i j}\right], e_{k \ell}=e_{\ell k}=1, e_{i i}=1$ for $i \neq k, \ell$, and all other entries are 0 .
Hint: Pare E down via cofactor expansion until the submatrix under consideration is

$$
\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] .
$$

3. Use cofactor expansion to show $\operatorname{det}(E)=1$, where E is the $n \times n$ elementary matrix representing addition of b times row ℓ to row k. That is, $E=\left[e_{i j}\right]$ where $e_{i i}=1$ for all $i, e_{k \ell}=b$, and all other entries are 0 .

Hint: Use the first round of cofactor expansion to eliminate b entirely. What does your submatrix look like?
4. Explain the connection between the results you found in 1-3 and the effect of row operations on the value of $\operatorname{det}(A)$.
5. Read the second half of §3.3: "Determinants as Area and Volume" and "Linear Transformations".

From the book:
$\S 3.1$ p. $190 \# 13$
§3.2 p. 199 \# 15-20, 29, 31 (15-20 should take no time at all).
§3.3 p. 209 \#19, 27, 29

