Answers to Even-Numbered Suggested Problems

6.2 \#26. Nonzero orthogonal vectors are linearly independent, so $\operatorname{dim} W=$ n and hence it must be the full space \mathbb{R}^{n}.
6.2 \#30. Orthogonality is not a property that depends on ordering: if the columns of U are orthogonal that is simply a statement about them as a set, and as a set they are the same as the columns of V.
6.3 \#24. a. Every w vector is orthogonal to every other w vector by assumption that the basis is orthogonal; likewise for the v vectors. Every w vector is orthogonal to every v vector because the w vectors lie in W and the v^{\prime} s in W^{\perp}, and every vector in W is orthogonal to every vector in W^{\perp}.
b. Every vector in \mathbb{R}^{n} may be written as a sum of a vector in W (its projection onto W) and a vector in W^{\perp} (the orthogonal component), and hence as a linear combination of the bases of W and W^{\perp} in the set from part (a).
c. In part (a) we showed the union of orthogonal bases for W and W^{\perp} is orthogonal; this means it is also linearly independent. In part (b) we showed it spans \mathbb{R}^{n}. Therefore it is a basis for \mathbb{R}^{n} and so contains n vectors, but it is also the union of sets of size $\operatorname{dim} W$ and $\operatorname{dim} W^{\perp}$, so those sum to n.
6.5 \#20. This problem does not actually rely on the fact that you are multiplying A with its own transpose. Suppose A 's columns are linearly dependent, so $c_{1} \boldsymbol{a}_{1}+\ldots+c_{n} \boldsymbol{a}_{n}=\mathbf{0}$ for some set of scalars c_{i} not all zero. The columns of $A^{T} A$ are $A^{T} \boldsymbol{a}_{1}, \ldots, A^{T} \boldsymbol{n}$, and

$$
\begin{aligned}
c_{1} A^{T} \boldsymbol{a}_{1}+\ldots+c_{n} A^{T} \boldsymbol{a}_{n} & =A^{T} c_{1} \boldsymbol{a}_{1}+\ldots+A^{T} c_{n} \boldsymbol{a}_{n} \\
& =A^{T}\left(c_{1} \boldsymbol{a}_{1}+\ldots+c_{n} \boldsymbol{a}_{n}\right) \\
& =A^{T} \mathbf{0}=\mathbf{0}
\end{aligned}
$$

Hence $A^{T} A$'s columns are also linearly dependent, and $A^{T} A$ is not invertible.

