Coordinates: New Axes

In \mathbb{R}^2 it is relatively easy to visualize a basis as determining a set of coordinate axes, the lines that run through (0,0) and the vectors of the basis. The entries of the \mathcal{B} -coordinate vector of \boldsymbol{x} are the distances one must proceed from the origin parallel to each axis.

Careful: the unit of measurement is one *basis vector length*, not one standard unit. I'll point that out in the examples.

Back to our example from earlier in lecture:

$$\boldsymbol{x} = \begin{bmatrix} 3\\4 \end{bmatrix}, \quad \mathcal{B}_2 = \left\{ \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1 \end{bmatrix} \right\}, \quad [\boldsymbol{x}]_{\mathcal{B}_2} = \begin{bmatrix} -1\\4 \end{bmatrix}.$$

The axis system: solid lines are the \mathcal{B}_2 axes, dashed line is the standard axis that isn't a \mathcal{B}_2 -axis, dots appear on the axes every unit distance (as determined by the length of the basis vectors: so on the standard axes they are one standard unit apart, and on the nonstandard axis they are $\sqrt{2}$ standard units apart).

To find \boldsymbol{x} , we walk -1 units west and 4 basis vector units ($4\sqrt{2}$ standard units) northeast, in either order.

$$\boldsymbol{x} = \begin{bmatrix} 3\\4 \end{bmatrix}, \quad \mathcal{B}_3 = \left\{ \begin{bmatrix} 2\\1 \end{bmatrix}, \begin{bmatrix} 1\\2 \end{bmatrix} \right\}, \quad [\boldsymbol{x}]_{\mathcal{B}_2} = \begin{bmatrix} 2/3\\5/3 \end{bmatrix}.$$

The axis system: solid lines are the \mathcal{B}_3 axes, dashed lines are the standard axes, dots appear on the axes every unit distance (as determined by the length of the basis vectors: so on the standard axes they are one standard unit apart, and on the nonstandard axes they are $\sqrt{5}$ standard units apart).

To find \boldsymbol{x} , we walk $\frac{2}{3}$ of a basis vector unit $(\frac{2}{3}\sqrt{5} \text{ standard units})$ along the line with slope $\frac{1}{2}$ and $\frac{5}{3}$ of a basis vector unit $(\frac{5}{3}\sqrt{5} \text{ standard units})$ along the line with slope 2.

