Coordinates: New Axes

In \mathbb{R}^{2} it is relatively easy to visualize a basis as determining a set of coordinate axes, the lines that run through $(0,0)$ and the vectors of the basis. The entries of the \mathcal{B}-coordinate vector of \boldsymbol{x} are the distances one must proceed from the origin parallel to each axis.

Careful: the unit of measurement is one basis vector length, not one standard unit. I'll point that out in the examples.

Back to our example from earlier in lecture:

$$
\boldsymbol{x}=\left[\begin{array}{l}
3 \\
4
\end{array}\right], \quad \mathcal{B}_{2}=\left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right\}, \quad[\boldsymbol{x}]_{\mathcal{B}_{2}}=\left[\begin{array}{c}
-1 \\
4
\end{array}\right] .
$$

The axis system: solid lines are the \mathcal{B}_{2} axes, dashed line is the standard axis that isn't a \mathcal{B}_{2}-axis, dots appear on the axes every unit distance (as determined by the length of the basis vectors: so on the standard axes they are one standard unit apart, and on the nonstandard axis they are $\sqrt{2}$ standard units apart).

To find \boldsymbol{x}, we walk -1 units west and 4 basis vector units ($4 \sqrt{2}$ standard units) northeast, in either order.

$$
\boldsymbol{x}=\left[\begin{array}{l}
3 \\
4
\end{array}\right], \quad \mathcal{B}_{3}=\left\{\left[\begin{array}{l}
2 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
2
\end{array}\right]\right\}, \quad[\boldsymbol{x}]_{\mathcal{B}_{2}}=\left[\begin{array}{c}
2 / 3 \\
5 / 3
\end{array}\right] .
$$

The axis system: solid lines are the \mathcal{B}_{3} axes, dashed lines are the standard axes, dots appear on the axes every unit distance (as determined by the length of the basis vectors: so on the standard axes they are one standard unit apart, and on the nonstandard axes they are $\sqrt{5}$ standard units apart).

To find \boldsymbol{x}, we walk $\frac{2}{3}$ of a basis vector unit $\left(\frac{2}{3} \sqrt{5}\right.$ standard units) along the line with slope $\frac{1}{2}$ and $\frac{5}{3}$ of a basis vector unit ($\frac{5}{3} \sqrt{5}$ standard units) along the line with slope 2 .

