Project 5: Avg Temperature in NYC

By: Connie Zhang, Grace Qu, Tyler Neath, Juliet Giraso, Helen Cao

Introduction

What is Curve Fitting?

Curve fitting is the process of finding the line of best fit of a given set of data points.

What is Least Squares?

Least squares is a way to find the line of best fit.

$$X\boldsymbol{\beta} = \mathbf{y}, \text{ where } X = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix}, \quad \boldsymbol{\beta} = \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix}, \quad \mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

Predicted y-value	Observed y-value	
$\beta_0 + \beta_1 x_1$	=	y_1
$\beta_0 + \beta_1 x_2$	=	y_2
÷		÷
$\beta_0 + \beta_1 x_n$	=	y_n

Data Collection Process

SOURCES:

Temperature - Precipitation - Sunshine - Snowfall

- SELECTED NEW YORK AS OUR STUDY AREA
- ♦ CHOOSE THE MONTH OF AUGUST FOR THE ANALYSIS ACROSS THE YEARS (1895-2019)
- ✤ USED THE AVERAGE TEMPERATURE OF AUGUST FOR EACH YEAR
- ✤ REPRESENTED THE DATA IN A TABLE

Dataset: Sample Average August Temps

<u>180</u>	<u>)Os</u>	<u>19</u>	<u>200s</u>
Year	Average	Year	Average
1895	74.6	1922	72.2
1896	74.9	1923	72.1
1897	71.8	1924	73.8
1898	74.4	1925	72.9
1899	74.4	1926	73.5

<u>2000s</u>

Year	Average
2015	79
2016	79.2
2017	74
2018	78.1

Code Dev

Decided Programming tool: MATLAB

Reasons:

- 1) Flexibility in Code/ Data import
- 2) Built-in Functions
- 3) Data visualisation

Least Squares Implementation

$$\hat{\mathbf{x}} = (A^T A)^{-1} A^T \mathbf{b}$$

Y = temp'; % tranpose X = time'; H = [ones(length(Y),1),X]; Astar = inv(H'*H)*H'*Y;

Y2 = H*Astar;

Curve Fitting

 $H_2nd = [ones(length(Y), 1), X, X.^2];$ Astar_2nd = inv(H_2nd'*H_2nd)*H_2nd'*Y;

H_fifth = [ones(length(Y),1),X,X.^2,X.^3,X.^4,X.^5]; Astar_fifth = inv(H_2nd'*H_2nd)*H_2nd'*Y;

Best Fi

Data

2000

2020

Final Linear Result

y = 0.0270x + 21.5816

Conclusion

Generally, there is a positive correlation between the time and temperature.

Factors affecting data analysis:

- 1. Sample size; Allowing more variation;
- 2. Curve-fitting method chosen;