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HISTORY

First recorded use in Chapter Eight: Rectangular Arrays of
The Nine Chapters on Mathematical Artin 179 CE in China.

Isaac Newton — 1707
Carl Friedrich Gauss — 1810
Wilheilm Jordan — 1888
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Row Reduction Proof

Let A be an m x n augmented matrix representing a system of linear equations.
Let rows R,, ..., R be rows of matrix A.

A has elementsa;, toa,,,.

Proof: Three elementary row operations do not change the solution set of the system
represented by the matrix,and,consequently,can be used to solve systems of linear equations.



Row Reduction Proof

® Swapping two rows

Swapping two rows does not change the solution set of the system because none of
the equations,variables,or coefficients are altered in any way.

ax;+...tax,=c bx;+...+bx,=d

bx,+...+bx,=d ax;t+...+tax,=c

Both of these have the same solution set even with the order in which they are
written swapped.This is generalizable to any number of equations and swaps.



Row Reduction Proof

& Scaling a row

Scaling a row does not change the solution set of the system because multiplying two sides of an
equation by the same value does not change the solution of that equation.Each row
of A represents an equation,so scaling rows does not alter the solution of the augmented matrix.



Row Reduction Proof

® Adding a multiple of one row to another row

This operation does not change the solution set because it is reversible, same as the other two
elementary row operations. Any addition of rows results in a row that is a consequence of a
different row. In order to return to the original row, the opposite operation can be applied to the
consequence and the row will return to its original form. This does not change the solution
because the operations can occur in both directions.

Let | and Il be two rows of matrix A.
ael+beIll=IP,wherell’is a consequence of Il and is equivalent to ],
and a and b are real numbers

In order to return I’ to Il, simply subtract the row that was added to Il.
IF-ae-l=Il



Determinant Proof

Theorem: The determinant of an upper triangular matrix is equal to the product of the
entries on the main diagonal of the matrix.

The determinant of the identity matrix:

1 0 0
[OIOI

0 0 1

is the product of the diagonal entries. det(l) =1
**3 x 3 matrices chosen for visual convenience and due to the limitations of Word**
Proof: The row reduction algorithm can be used to find the determinant of a matrix by using the

diagonal product of an upper triangular matrix rule for determinants and modifying this product
based on the row operations used to reduce the matrix.




Determinant Proof

1) Swapping two rows reverses the sign of the determinant

Swapping two rows can be represented with elementary matrices. For example,
multiplying any 3 x 3 matrix by the following matrix will swap the first two rows:

010
m=li o o
0 0 1

This holds for matrices of any dimension for any number of swaps.
The determinant of this matrix can be calculated using a cofactor expansion either across
the first row or down the first column:

det(M) =-1 » |$ (1’ < f sdwd. e

The determinant is -1 for any such elementary matrix of any dimension with two rows
swapped.

Now assume M is any matrix that swaps two rows of another matrix when the two
matrices are multiplied together:

det(M x A) = det(M) x det(A) = -1 » det(A)

Therefore, swapping two rows reverses the sign of the determinant of a matrix for
each swap.




Determinant Proof

2) Scaling a row by a value scales the determinant by that value

Scaling a row can also be represented with elementary matrices. For example, multiplying
any 3 x 3 matrix by the following matrix will scale the first row by factor n:

n 0 0
N=|0 1 0]
0 0 1
The determinant of this matrix is the product of diagonal entries:

det(N)=nelel=n

The determinant is n for any such elementary matrix of any dimension with one row
scaled by n.

Now assume N is any matrix that scales a row of another matrix when the two
matrices are multiplied together:

det(N x A) = det(N) x det(A) = n * det(A)

Therefore, scaling a row by a value scales the determinant by the same value for each
scaling operation.




Determinant Proof

3) Adding a multiple of one row to another row has no effect on the determinant

Adding a multiple of one row to another row can be represented with elementary
matrices. For example, multiplying any 3 x 3 matrix by the following matrix will add the
n times the first row to the second row:

1 0 O
P=[n 1 Ol
0 0 1

The determinant of this matrix can be calculated by a cofactor expansion across the first
row:

det(P)=1-|(1) (1) =1e1e1=1

The determinant is 1 for any such elementary matrix of any dimension with a multiple of
one row added to another.

Now assume P is any matrix that adds a multiple of one row to another row:
det(P x A) = det(P) x det(A) = 1 » det(A) = det(A)

Therefore, adding a multiple of one row to another row has no effect on the determinant.




The Row Reduction Algorithm

FORWARD PHASE

%{‘EP 1: Begin with the leftmost nonzero column. This is a pivot column
€ pivot position is at the top. |

STEP 2: Sglect a nonzero entry in the pivot column as a pivot. If necessary,
interchange rows to move this entry into the pivot position.

STEP 3: Use row replacement operations to create zeros in all positions
below the pivot.

STEP 4: Cover the row containing the pivot position, and cover all rows, if
any, above it. Apply steps |—3 to the submatrix that remains. Repeat the

process until there are no more nonzero rows to modify.

BACKWARDPHASE
« STEP 5: Beginning with the rightmost pivot and working upward and to
the left, create zZeros above each pivot. If a pivot is not 1, make it 1 by a

scaling operation.

Slide 1.2- 14




Row Reduction Algorithm Program

counter = 0;
%set counter for number of pivots to 0@
pivarray = [];

if A([j:m],i) == zeros((m-(j-1)),1)
%scolumn is the zero column
pivcol = 1+1:
%sincrease plv COLlulin

else
%scurrent column is piv column
counter = counter + 1;
%piv column counter increases
pivcol = 1i;
%store piv columns in a row array
pivarray(counter) = i;
%store 1 1in a row array
break

%1f there 1is no nonzero column, disp the zero matrix
if pivcol > n

RA = A;

%disp(RA)

break




Row Reduction Algorithm Program

pivrow = J;
%finds the first nonzero entry in the leftmost nonzero column
for i = jim
if A(i,pivcol) ==
pivrow = i+1;
else
pivrow = 1ij;
break
end
end
if pivrow=>m
RA = A;
break

end
pivpos = A(pivrow,pivcol):
%exchange rows so piv pos is at top

] pivrow],: pivrow ]
if pivrow == j
detscale 1xdetscale;
else
detscale —1xdetscale;
end
%make the pivot position =1
A(j,:) = (1/pivpos)*A(j,:);
detscale = pivposkdetscale;
%zeros under the pivot
ofor 4 j - ' :
for i = (j+1):m
scale = A(i,pivcol);
A(i,:) = ((-1xscale)*x(A(j,:))) + A(di,:);
end




Row Reduction Algorithm Program

disp('This is the echelon form of your matrix: ')

index = fliplr(pivarray);
for i = index
bpivpos = m;
for j = m:-1:1
if A(j,1) == 0
bpivpos = bpivpos - 1;
else
bpivpos = bpivpos;
break
end
end
for k = (bpivpos-1):-1:1
scaleB = A(k,1);
A(k,:) = ((-1xscaleB)x(A(bpivpos,:))) + A(k,:);

your matrix:

determinant = 1;
smatrix is square and we can calc det
for i = 1:n
determinant = determinant *x A(i,1i);
end
determinant = detscale * determinant;
disp('This is the determinant of your matrix: ')
disp(determinant)




Row Reduction Algorithm Program

Execution of code

Enter your matrix : [3,4,5;6,7,8;9,4,1]
This is the matrix you entered:
4 5

This is the echelon form of your matrix:
1.3333 1.¢
2.C

e reduced row echelon form of your matrix:

This is the determinant of your matrix:
-6.0000




Thanks for Watching!



