Math 22 - Fall 2019 Practice Exam 2

Your name:

Section (please check the box). \Box Section 1 (10 hour) \Box Section 2 (2 hour	Section (please check the box)	: \Box Section 1 (10 hour)	\Box Section 2 (2 hour)
---	--------------------------------	------------------------------	---------------------------

INSTRUCTIONS

- Except on clearly indicated short answer problems, you must explain what you are doing, and show your work. You will be *graded on your work*, not just on your answer.
- It is fine to leave your answer in a form such as $\sqrt{239}$ or $(385)(13^3)$. However, if an expression can be easily simplified (such as $\cos(\pi)$ or (3-2)), you should simplify it.
- You may use the last page for scrap paper.
- This is a closed book exam. You may not use notes, computing devices (calculators, computers, cell phones, etc.) or any other external resource.

GOOD LUCK!

(1)	Please indicate whether the following statements are TRUE or FALSE.	
Circle the correct answer. You do not have to show your work, however thinking about the		
	lem on a scrap paper is recommended.	
	1.) If $\dim(V) = p$, and if S is a linearly dependent subset of V, then S contains more than p	

	vectors.				
	TRUE	FALSE			
2.)	If a 6×4 matrix A has linearly independent colum A contains two zero rows.	ns, then the reduced row echelon for	m of		
	TRUE	FALSE			
3.)) There exists a 3×5 matrix whose column space has dimension 4.				
	TRUE	FALSE			
4.)	There exists a 3×3 matrix A such that dim(Nul($A)) = \operatorname{Rank}(A).$			
	TRUE	FALSE			
5.)	For any two $n \times n$ matrices A and B, we have det	$(AB) = \det(B^T A).$			
	TRUE	FALSE			
\sim		at most 2 defined by			

6.) Let P be a subset of \mathbb{P}_2 , the polynomials of degree at most 2, defined by

 $P = \{\mathbf{p}(t) \text{ in } \mathbb{P}_2 : \mathbf{p}(1) = 2\}.$

Then P is a subspace of \mathbb{P}_2 .

TRUE FALSE

7.) Let $\underset{C \leftarrow B}{P}$ be the $n \times n$ change of basis matrix that goes from \mathcal{B} coordinates to \mathcal{C} coordinates. Then, the columns of $\underset{C \leftarrow B}{P}$ span \mathbb{R}^n .

TRUE FALSE

(2) Consider the following matrices:

$$A = \left[\begin{array}{rrr} 1 & 2 & 3 \\ 4 & 5 & 6 \end{array} \right], \quad B = \left[\begin{array}{rrr} 7 & 8 \\ 9 & 10 \end{array} \right], \quad C = \left[\begin{array}{r} 1 \\ -2 \end{array} \right].$$

For each of the following matrix operations, indicate whether the operation is defined. If an expression is undefined, explain why. If an expression is defined, evaluate it.

a) BA + C.

b) *BC*.

c) $B + 3I_2$

(3) **a**) Given that

find the value of

$$\det \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} = -6$$
$$\det \begin{pmatrix} d & e & f \\ 4a & 4b & 4c \\ g - 3d & h - 3e & i - 3f \end{pmatrix}.$$

b) Suppose that A, B and C are 2×2 matrices with

$$\det(A) = 9, \det(C) = -\frac{1}{2} \text{ and } \det\left(\frac{1}{3}A^T B C^2\right) = -2.$$

Find det(B), if possible, or explain why you cannot.

(4) Assume that A is row-equivalent to B.

$$A = \begin{bmatrix} 1 & 2 & 3 & -4 & 8 \\ 1 & 2 & 0 & 2 & 8 \\ 2 & 4 & -3 & 10 & 9 \\ 3 & 6 & 0 & 6 & 9 \end{bmatrix}, B = \begin{bmatrix} 1 & 2 & 0 & 2 & 5 \\ 0 & 0 & 3 & -6 & 3 \\ 0 & 0 & 0 & 0 & -7 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

a) Find a basis for $\operatorname{Col}(A)$.

b) Find a basis for Nul(A).

c) Find a basis for Row(A).

(5) Let
$$W = \operatorname{Span}(S)$$
, where $S = \left\{ \begin{bmatrix} 3\\0\\3\\2 \end{bmatrix}, \begin{bmatrix} 1\\0\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\2\\3 \end{bmatrix} \right\}$ is a set of vectors in \mathbb{R}^4 .

a) Find a subset R of S which is a basis for W. What is the dimension of W?

b) Give an example of a vector \mathbf{v} which is in \mathbb{R}^4 but is not in W. Justify your answer.

c) Find a basis B for \mathbb{R}^4 by expanding the basis R you found in part a). Explain why B is a basis for \mathbb{R}^4 .

(6) Let $\mathbf{p}_1(t) = 1$, $\mathbf{p}_2(t) = t + 1$, $\mathbf{p}_3(t) = (t+1)^2$, $\mathbf{p}_4(t) = (t+1)^3$ be four polynomials in \mathbb{P}_3 . Let $B = \{\mathbf{p}_1(t), \mathbf{p}_2(t), \mathbf{p}_3(t), \mathbf{p}_4(t)\}$, and let $E = \{1, t, t^2, t^3\}$

be the standard basis of \mathbb{P}_3 .

a) Determine the coordinates of the vectors in B with respect to the basis E.

b) Determine the coordinates of the vectors in *E* with respect to the basis *B*.

Problem 6 continued on next page...

Continued from previous page... $\lceil 1 \rceil$

c) Suppose
$$\begin{bmatrix} \mathbf{q}(t) \end{bmatrix}_B = \begin{bmatrix} 1 \\ -1 \\ 2 \\ 3 \end{bmatrix}$$
. Find $\mathbf{q}(t)$.

d) Let $\mathbf{p}_1(t) = 1, \mathbf{p}_2(t) = t + 1, \mathbf{p}_3(t) = (t + 1)^2, \dots, \mathbf{p}_{n+1}(t) = (t + 1)^n$ be polynomials in \mathbb{P}_n . Show that the set

$$\{\mathbf{p}_1(t), \mathbf{p}_2(t), \mathbf{p}_3(t), \dots, \mathbf{p}_{n+1}(t)\}\$$

forms a basis of \mathbb{P}_n . (Hint: think about dimension.)

(7) Let V be the vector space of 2×2 upper triangular matrices, so that

$$V = \left\{ \left[\begin{array}{cc} a & b \\ 0 & c \end{array} \right] : a, b, c \in \mathbb{R} \right\}.$$

Let

Let
$$\mathcal{E} = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$
 be the standard basis of *V*, and consider the alternate bases

 $\mathcal{B} = \left\{ \left[\begin{array}{rrr} 1 & -1 \\ 0 & 1 \end{array} \right], \left[\begin{array}{rrr} 1 & 1 \\ 0 & 0 \end{array} \right], \left[\begin{array}{rrr} 0 & 1 \\ 0 & 1 \end{array} \right] \right\}$

and

$$\mathcal{C} = \left\{ \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \right\}.$$

(a) Find $\underset{\mathcal{E}\leftarrow\mathcal{B}}{P}$.

(b) Find $\underset{\mathcal{C}\leftarrow\mathcal{E}}{P}$.

Problem 7 continued on next page...

(c) Find
$$\underset{\mathcal{C}\leftarrow\mathcal{B}}{P}$$
.

Continued from previous page...

(d) If
$$\left[\begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix} \right]_{\mathcal{B}} = \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$$
, find $\left[\begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix} \right]_{\mathcal{C}}$.

(8) Let A be a $m \times n$ matrix and C be a $n \times m$ matrix, such that

$$AC = I_m.$$

a) Show that the map $T: \mathbb{R}^n \to \mathbb{R}^m, \mathbf{x} \mapsto T(\mathbf{x}) = A\mathbf{x}$ is onto.

b) Show that the map $S : \mathbb{R}^m \to \mathbb{R}^n, \mathbf{x} \mapsto S(\mathbf{x}) = C\mathbf{x}$ is one-to-one.

c) Is $m \ge n$ or $n \ge m$? Justify your answer.

d) Let $R : \mathbb{R}^n \to \mathbb{R}^m$, $\mathbf{x} \mapsto R(\mathbf{x}) = B\mathbf{x}$ be a linear map such that R is onto. Show that there is a matrix D, such that

$$BD = I_m$$

(This page is intentionally left blank in case you need extra space for any of the problems. If you use this page for a particular problem, it is essential that you make a note on the page where the problem appears, indicating that your work is continued here.)