# Math 22 – Linear Algebra and its applications

- Lecture 9 -

Instructor: Bjoern Muetzel

• **Office hours:** Tu 1-3 pm, Th, **Sun 2-4 pm** in KH 229

• **Tutorial:** Tu, Th, **Sun 7-9 pm** in KH 105

 Midterm 1: Monday Oct 7 from 4-6 pm in Carpenter 013 Topics: till this Thursday (included) You can find the practice exam online



2.1

#### MATRIX OPERATIONS

#### LINEAR ALGEBRA AND ITS APPLICATIONS

FIFTH EDITION

David C. Lay • Steven R. Lay • Judi J. McDonald

 <u>Summary</u>: The composition of linear maps is equal to the multiplication of the associated standard matrices.

## MATRICES

- If A is an m × n matrix, then A has m rows and n columns.
   The entry in the *i*-th row and *j*-th column of A is denoted by a<sub>ij</sub> and is called the (*i*, *j*)-entry of A.
- Each column of *A* is a vector in  $\mathbb{R}^m$ . The **j-th column vector** is denoted by  $a_j$

$$\operatorname{Row} i \begin{bmatrix} a_{11} & \cdots & a_{1j} & \cdots & a_{1n} \\ \vdots & & \vdots & & \vdots \\ a_{i1} & \cdots & a_{ij} & \cdots & a_{in} \\ \vdots & & & \vdots & & \vdots \\ a_{m1} & \cdots & a_{mj} & \cdots & a_{mn} \end{bmatrix} = A = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix}$$

$$\stackrel{\uparrow}{\underset{a_1}{\operatorname{a_1}}} \stackrel{\uparrow}{\underset{a_j}{\operatorname{a_1}}} \stackrel{\uparrow}{\underset{a_n}{\operatorname{a_n}}} \stackrel{\uparrow}{\underset{a_n}{\operatorname{a_n}}}$$

- Note: The diagonal entries of an m × n matrix A = [a<sub>ij</sub>] are a<sub>11</sub>, a<sub>22</sub>, a<sub>33</sub>, ..., and they form the main diagonal of A. A diagonal matrix is a square n × n matrix whose nondiagonal entries are all zero.
- **Example:**  $I_n$ , the  $n \times n$  identity matrix and **0** the  $n \times n$  zero matrix.

$$I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \mathbf{0} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

### SUM AND SCALAR MULTIPLICATION

- Definition: If A and B are m×n matrices, then the sum A+B is the m×n matrix whose entries are the sums of the corresponding entries in A and B.
- Note: The sum A + B is defined only when A and B are the same size.
- Definition: If r is a scalar and A is a matrix, then the scalar multiple rA is the matrix whose entries are r times the corresponding entries in A.

• **Theorem 1:** Let *A*, *B*, and *C* be matrices of the same size, and let *r* and *s* be scalars.

a. 
$$A + B = B + A$$
  
b.  $(A + B) + C = A + (B + C)$   
c.  $A + 0 = A$   
d.  $r(A + B) = rA + rB$   
e.  $(r + s)A = rA + sA$   
f.  $r(sA) = (rs)A$ 

This is easily verified as all operations are performed **entrywise**.

#### SUM AND SCALAR MULTIPLICATION

Example: For 
$$A = \begin{bmatrix} 4 & 0 & 5 \\ -1 & 3 & 2 \end{bmatrix}, B = \begin{bmatrix} 1 & 1 & 1 \\ 3 & 5 & 7 \end{bmatrix}, C = \begin{bmatrix} 2 & -3 \\ 0 & 1 \end{bmatrix}$$

1.) Find *A*+*B* and *A*+*C*.
 2.) Find *3C* and *A*+2*B*.

#### Solution:

### **COMPOSITION OF LINEAR MAPS**

- Theorem: Let  $T: \mathbb{R}^n \to \mathbb{R}^m$  and  $S: \mathbb{R}^m \to \mathbb{R}^p$  be linear transformations with standard matrices *B* and *A*, respectively. Then the composition  $S \circ T: \mathbb{R}^n \to \mathbb{R}^p$  is again a linear transformation.
- Proof:

• What is the standard matrix *C* of the composite transformation  $S \circ T : \mathbb{R}^n \to \mathbb{R}^p$  ?

We know by **Theorem 10** that for the basis  $\{e_1, e_2, ..., e_n\}$  in  $\mathbb{R}^n$ 

$$C = [S \circ T(e_1) \dots S \circ T(e_n)].$$

### COMPOSITION OF LINEAR MAPS

- Can we express *C* in terms of *A* and *B*?
- To this end we translate our problem into matrix notation:
- The image  $T(\mathbf{x})$  of a vector  $\mathbf{x}$  is  $B\mathbf{x}$ .
- To get the image  $S \circ T(x) = S(T(x))$  of **x**, we must apply S to Bx.
- This is equal to multiplying A with the vector  $B\mathbf{x}$ . Hence  $S \circ T(\mathbf{x}) = A(B\mathbf{x}).$
- Thus A(Bx) is obtained from x by the *composition of two linear mappings*.

• <u>Goal</u>: Define matrix multiplication *AB*, such that *AB* is the matrix *C* of the composite transformation  $S \circ T$ .

$$A(B\mathbf{x}) = (AB)\mathbf{x} = \mathbf{C}\mathbf{x}$$



Multiplication by AB.

### MATRIX MULTIPLICATION

We can find C in terms of A and B by looking at the images of the basis {e<sub>1</sub>, e<sub>2</sub>, ..., e<sub>n</sub>} in ℝ<sup>n</sup>. We know that

 $C = [S \circ T(e_1) \dots S \circ T(e_n)].$ 

We have:

Therefore we **define**:

Definition: If A is a p × m matrix, and if B is an m × n matrix with columns b<sub>1</sub>, ..., b<sub>n</sub>, then the product AB is the matrix whose columns are Ab<sub>1</sub>, ..., Ab<sub>n</sub>. That is the matrix product is

$$AB = [Ab_1, Ab_2 \dots, Ab_n].$$

 This way multiplication of matrices corresponds to composition of linear transformations. • **Example:** Compute *AB*, where

$$A = \begin{bmatrix} 2 & 3 \\ 1 & -5 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 4 & 3 & 1 \\ 1 & 0 & 3 \end{bmatrix}.$$

Solution:

## MATRIX MULTIPLICATION

#### **Row-column rule for computing** *C*=*AB*

- If A is an  $m \times k$  matrix, and if B is a  $k \times n$  matrix then the product C=AB is defined.
- In this case the

entry  $c_{ij}$  in row *i* and column *j* of *C*=*AB*, is the sum of the products of corresponding entries from row *i* of *A* and column *j* of *B*. If  $c_{ij} = (AB)_{ij}$ , then

$$(AB)_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{ik}b_{kj}$$

#### **Row-column rule for computing C=***AB*



- **Theorem 2:** Let *A*, *B* and *C* be matrices that have sizes for which the indicated sums and products are defined. Then
  - a. A(BC) = (AB)C (associative law of multiplication) b. A(B+C) = AB + AC (left distributive law) c. (B+C)A = BA + CA (right distributive law) d. r(AB) = (rA)B = A(rB) for any scalar re.  $I_mA = A = AI_n$  (identity for matrix multiplication)

- **Proof:** (a) follows from the fact that matrix multiplication corresponds to composition of linear mappings and as the composition of mappings is associative.
- (b)-(e) are easily verified using the definition.

- **Definition:** If AB = BA, we say that A and B commute with one another.
- Warnings:
  - 1. In general,  $AB \neq BA$ .
  - 2. The cancellation laws do *not* hold for matrix multiplication. That is, if AB = AC, then it is *not* true in general that B = C.
  - 3. If a product *AB* is the zero matrix, you *cannot* conclude in general that either A = 0 or B = 0.

### POWERS OF A MATRIX

• **Definition:** If A is  $an_{n \times n}$  matrix and if k is a positive integer, then  $A^k$  denotes the product of k copies of A:

$$A^k = A \cdots A_k$$

• We set  $A^0 = I_n$ , the identity matrix.

#### THE TRANSPOSE OF A MATRIX

- **Definition:** Given an  $m \times n$  matrix A, the **transpose** of A is the  $n \times m$  matrix, denoted by  $A^T$ , whose columns are formed from the corresponding rows of A.
- **Theorem 3:** Let *A* and *B* denote matrices whose sizes are appropriate for the following sums and products.

a. 
$$(A^{T})^{T} = A$$
  
b.  $(A + B)^{T} = A^{T} + B^{T}$   
c. For any scalar  $r$ ,  $(rA)^{T} = rA^{T}$   
d.  $(AB)^{T} = B^{T}A^{T}$ 

**Example:** For 
$$A = \begin{bmatrix} 2 & 3 \\ 1 & -5 \end{bmatrix}$$
 and  $B = \begin{bmatrix} 4 & 3 & 6 \\ 1 & -2 & 3 \end{bmatrix}$ , find  $A^2$  and  $B^T$ .

Solution:

- **Exercise:** For each of the following statements find different nontrivial  $2 \times 2$  matrices, that satisfy them.
  - 1.) AB = BA.
  - 2.)  $AB \neq BA$ .
  - 3.) AB = AC, but  $B \neq C$ .
  - 4.) AB = 0 but  $A \neq 0$  and  $B \neq 0$ .