Math 22 -
Linear Algebra and its applications

- Lecture 9 -

Instructor: Bjoern Muetzel

GENERAL INFORMATION

- Office hours: Tu 1-3 pm, Th, Sun 2-4 pm in KH 229
- Tutorial: Tu, Th, Sun 7-9 pm in KH 105
- Midterm 1: Monday Oct 7 from 4-6 pm in Carpenter 013

Topics: till this Thursday (included)
You can find the practice exam online

2

Matrix Algebra

2.1

MATRIX OPERATIONS

- Summary: The composition of linear maps is equal to the multiplication of the associated standard matrices.

MATRICES

- If A is an $\boldsymbol{m} \times \boldsymbol{n}$ matrix, then A has \boldsymbol{m} rows and \boldsymbol{n} columns. The entry in the \boldsymbol{i}-th row and \boldsymbol{j}-th column of A is denoted by $\boldsymbol{a}_{\boldsymbol{i} \boldsymbol{j}}$ and is called the $(\boldsymbol{i}, \boldsymbol{j})$-entry of A.
- Each column of A is a vector in \mathbb{R}^{m}. The \mathbf{j}-th column vector is denoted by $\boldsymbol{a}_{\boldsymbol{j}}$

MATRICES

- Note:The diagonal entries of an $m \times n$ matrix $A=\left[a_{i j}\right]$ are $\mathrm{a}_{11}, \mathrm{a}_{22}, \mathrm{a}_{33}, \ldots$, and they form the main diagonal of A.
A diagonal matrix is a square $n \times n$ matrix whose nondiagonal entries are all zero.
- Example: I_{n}, the $n \times n$ identity matrix and $\mathbf{0}$ the $n \times n$ zero matrix.

$$
I_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad \mathbf{0}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

SUM AND SCALAR MULTIPLICATION

- Definition: If A and B are $m \times n$ matrices, then the sum $A+B$ is the $m \times n$ matrix whose entries are the sums of the corresponding entries in A and B.
- Note: The sum $A+B$ is defined only when A and B are the same size.
- Definition: If r is a scalar and A is a matrix, then the scalar multiple $r A$ is the matrix whose entries are r times the corresponding entries in A.

SUM AND SCALAR MULTIPLICATION

- Theorem 1: Let A, B, and C be matrices of the same size, and let r and s be scalars.
a. $A+B=B+A$
b. $(A+B)+C=A+(B+C)$
c. $A+0=A$
d. $r(A+B)=r A+r B$
e. $(r+s) A=r A+s A$
f. $r(s A)=(r s) A$

This is easily verified as all operations are performed entrywise.

SUM AND SCALAR MULTIPLICATION

Example: For $A=\left[\begin{array}{rrr}4 & 0 & 5 \\ -1 & 3 & 2\end{array}\right], B=\left[\begin{array}{lll}1 & 1 & 1 \\ 3 & 5 & 7\end{array}\right], C=\left[\begin{array}{rr}2 & -3 \\ 0 & 1\end{array}\right]$
1.) Find $A+B$ and $A+C$.
2.) Find $3 C$ and $A+2 B$.

- Solution:

COMPOSITION OF LINEAR MAPS

- Theorem: Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $S: \mathbb{R}^{m} \rightarrow \mathbb{R}^{p}$ be linear transformations with standard matrices B and A, respectively. Then the composition $S \circ T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$ is again a linear transformation.
- Proof:
- What is the standard matrix \boldsymbol{C} of the composite transformation $S \circ T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$?

We know by Theorem 10 that for the basis $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ in \mathbb{R}^{n}

$$
C=\left[S \circ T\left(e_{1}\right) \ldots S \circ T\left(e_{n}\right)\right] .
$$

COMPOSITION OF LINEAR MAPS

- Can we express C in terms of A and B ?
- To this end we translate our problem into matrix notation:
- The image $T(\mathrm{x})$ of a vector \mathbf{x} is $B \mathbf{x}$.
- To get the image $S \circ T(\mathrm{x})=\mathrm{S}(\mathrm{T}(\mathrm{x}))$ of \mathbf{x}, we must apply S to $B \mathbf{x}$.
- This is equal to multiplying A with the vector $B \mathbf{x}$. Hence

$$
S \circ T(\mathrm{x})=A(B \mathbf{x}) .
$$

- Thus $A(B \mathbf{x})$ is obtained from x by the composition of two linear mappings.

MATRIX MULTIPLICATION

- Goal: Define matrix multiplication $A B$, such that $A B$ is the matrix C of the composite transformation $S \circ T$.

$$
A(B \mathrm{x})=(A B) \mathrm{x}=\mathrm{Cx}
$$

Multiplication by $A B$.

MATRIX MULTIPLICATION

- We can find C in terms of A and B by looking at the images of the basis $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ in \mathbb{R}^{n}. We know that

$$
C=\left[S \circ T\left(e_{1}\right) \ldots S \circ T\left(e_{n}\right)\right] .
$$

We have:

MATRIX MULTIPLICATION

Therefore we define:

- Definition: If A is a $p \times m$ matrix, and if B is an $m \times n$ matrix with columns $\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}$, then the product $A B$ is the matrix whose columns are $A \mathbf{b}_{1}, \ldots, A \mathbf{b}_{n}$. That is the matrix product is

$$
A B=\left[A b_{1}, A b_{2} \ldots, A b_{n}\right] .
$$

- This way multiplication of matrices corresponds to composition of linear transformations.

MATRIX MULTIPLICATION

- Example: Compute $A B$, where

$$
A=\left[\begin{array}{rr}
2 & 3 \\
1 & -5
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{lll}
4 & 3 & 1 \\
1 & 0 & 3
\end{array}\right] .
$$

- Solution:

MATRIX MULTIPLICATION

Row-column rule for computing $C=A B$

- If A is an $m \times k$ matrix, and if B is a $k \times n$ matrix then the product $C=A B$ is defined.
- In this case the
entry $c_{i j}$ in row i and column j of $C=A B$, is the sum of the products of corresponding entries from row \boldsymbol{i} of A and column \boldsymbol{j} of B.
If $c_{i j}=(A B)_{i j}$, then

$$
(A B)_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\cdots+a_{i k} b_{k j}
$$

Row-column rule for computing $\mathrm{C}=\boldsymbol{A B}$

PROPERTIES OF MATRIX MULTIPLICATION

Theorem 2: Let A, B and C be matrices that have sizes for which the indicated sums and products are defined. Then
a. $A(B C)=(A B) C \quad$ (associative law of multiplication)
b. $A(B+C)=A B+A C$ (left distributive law)
c. $(B+C) A=B A+C A$ (right distributive law)
d. $\quad r(A B)=(r A) B=A(r B)$ for any scalar r
e. $I_{m} A=A=A I_{n} \quad$ (identity for matrix multiplication)

PROPERTIES OF MATRIX MULTIPLICATION

- Proof: (a) follows from the fact that matrix multiplication corresponds to composition of linear mappings and as the composition of mappings is associative.
- (b)-(e) are easily verified using the definition.

PROPERTIES OF MATRIX MULTIPLICATION

- Definition: If $A B=B A$, we say that A and B commute with one another.
- Warnings:

1. In general, $A B \neq B A$.
2. The cancellation laws do not hold for matrix multiplication. That is, if $A B=A C$, then it is not true in general that $B=C$.
3. If a product $A B$ is the zero matrix, you cannot conclude in general that either $A=0$ or $B=0$.

POWERS OF A MATRIX

- Definition: If A is an $n \times n$ matrix and if k is a positive integer, then A^{k} denotes the product of k copies of A :

$$
A^{k}=A \cdots A
$$

- We set $A^{0}=I_{n}$, the identity matrix.

THE TRANSPOSE OF A MATRIX

- Definition: Given an $m \times n$ matrix A, the transpose of A is the $n \times m$ matrix, denoted by A^{T}, whose columns are formed from the corresponding rows of A.

Theorem 3: Let A and B denote matrices whose sizes are appropriate for the following sums and products.
a. $\left(A^{T}\right)^{T}=A$
b. $(A+B)^{T}=A^{T}+B^{T}$
c. For any scalar $r,(r A)^{T}=r A^{T}$
d. $(A B)^{T}=B^{T} A^{T}$

Example: For $A=\left[\begin{array}{rr}2 & 3 \\ 1 & -5\end{array}\right]$ and $B=\left[\begin{array}{ccc}4 & 3 & 6 \\ 1 & -2 & 3\end{array}\right]$, find A^{2} and B^{T}.

- Solution:

PROPERTIES OF MATRIX MULTIPLICATION

- Exercise: For each of the following statements find different nontrivial 2×2 matrices, that satisfy them.
1.) $A B=B A$.
2.) $A B \neq B A$.
3.) $A B=A C$, but $B \neq C$.
4.) $A B=0$ but $\mathrm{A} \neq 0$ and $B \neq 0$.

