Math 22 – Linear Algebra and its applications

- Lecture 8 -

Instructor: Bjoern Muetzel

GENERAL INFORMATION

- **Office hours:** Tu 1-3 pm, **Th**, Sun 2-4 pm in KH 229
- Tutorial: Tu, Th, Sun 7-9 pm in KH 105
- Attention: This Thursday the x-hour will be a lecture:

Section 1: 12:15 - 1:05 pm in Kemeny 007

Section 2: 1:20 - 2:10 pm in Kemeny 007

office hour will start at 2:15 pm.

Midterm 1: Monday Oct 7 from 4-6 pm in Carpenter 013

Topics: till this **Thursday** (included)

You can find the practice exam online

1

Linear Equations in Linear Algebra

1.9

THE MATRIX OF A LINEAR TRANSFORMATION

Summary:

- 1.) In finite dimensions linear and matrix transformations are the same.
- 2.) We find **conditions** that show us when a **linear trans- formation** maps **onto** the whole codomain and when it is **one-to-one**.

A linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ is completely determined by the two images $T(\begin{bmatrix} 1 \\ 0 \end{bmatrix})$ and $T(\begin{bmatrix} 0 \\ 1 \end{bmatrix})$:

Example: The transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ given by

$$T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} \cos(t) & -\sin(t) \\ \sin(t) & \cos(t) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

is a rotation around the origin with angle t.

Example: Reflections:

Reflection through the x_2 -axis

$$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$

Reflection through the line $x_2 = x_1$

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

TABLE 2 Contractions and Expansions

TABLE 3 Shears

TABLE 4 Projections

Transformation	Image of the Unit Square	Standard Matrix	
Projection onto the x ₁ -axis	x_2 x_2 x_1 x_2 x_3 x_4	$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$	

Projection onto the x_2 -axis

 $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$

THE MATRIX OF A LINEAR TRANSFORMATION

■ **Theorem 10**: Let T: $\mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then there exists a **unique matrix** A such that

$$T(x) = Ax$$
 for all x in \mathbb{R}^n

In fact, A is the m × n matrix whose jth column is the vector $T(e_j)$, where e_j is the jth column of the identity matrix in \mathbb{R}^n :

$$A = [T(e_1), T(e_2), ..., T(e_n)]$$

Proof:

THE MATRIX OF A LINEAR TRANSFORMATION

- Note 1: The set of vectors $\{e_1, e_2, ..., e_n\}$ in \mathbb{R}^n is called a standard basis of \mathbb{R}^n .
- Note 2: The matrix $A = [T(e_1), T(e_2), ..., T(e_n)]$ is called the standard matrix for the linear transformation T.
- Note 3: Theorem 10 implies that every linear transformation from \mathbb{R}^n to \mathbb{R}^m can be viewed as a matrix transformation, and vice versa.

THE MATRIX OF A LINEAR TRANSFORMATION

Example: Find the standard matrix A for the transformation T(x)=3x, for x in \mathbb{R}^2 .

Solution:

ONTO MAPPINGS

Definition: A mapping T: $\mathbb{R}^n \to \mathbb{R}^m$ is said to be **onto** \mathbb{R}^n if <u>each</u> **b** in \mathbb{R}^m is the image of <u>at least one</u> **x** in \mathbb{R}^n . In other words the range of *T* is the whole codomain of *T*.

FIGURE 3 Is the range of T all of \mathbb{R}^m ?

ONTO MAPPINGS

When is a map onto?

- T maps \mathbb{R}^n onto \mathbb{R}^m if, for <u>each</u> **b** in \mathbb{R}^m , there exists a **solution** x in \mathbb{R}^n of T(x) = b.
- Translating this problem into matrix notation we get

$$T(x) = Ax = b$$
, where $A = [T(e_1), T(e_2), ..., T(e_n)]$.

• When T(x) = Ax = b has always a solution in stated in **Ch.1.4**, **Theorem 4.**

ONTO MAPPINGS

- **Theorem 4:** Let A be an $m \times n$ matrix. Then the following statements are logically equivalent.
 - a. For each **b** in \mathbb{R}^m , the equation Ax = b has a solution.
 - b. Each **b** in \mathbb{R}^m is a linear combination of the columns of A.
 - c. The columns of A span \mathbb{R}^m .
 - d. | A has a pivot position in every **row.**

Hence we can conclude using just d.:

■ **Theorem**: Let T: $\mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation and let A be the standard matrix for T. Then T maps \mathbb{R}^n onto \mathbb{R}^m if and only if A has a **pivot position** in every **row.**

ONE-TO-ONE MAPPINGS

Definition: A mapping T: $\mathbb{R}^n \to \mathbb{R}^m$ is said to be **one-to-one** if each **b** in \mathbb{R}^m is the image of *at most one* **x** in \mathbb{R}^n .

In other words for <u>each</u> **b** in the **range of** T there is <u>exactly one</u> \mathbf{x} in \mathbb{R}^n in such that T(x) = b.

ONE-TO-ONE MAPPINGS

When is a map one-to-one?

- T is one-to-one if, for <u>each</u> b in \mathbb{R}^m , there exists at most one solution x in \mathbb{R}^n of T(x)=b.
- Translating this problem into matrix notation we get

$$T(x) = Ax = b$$
, where $A = [T(e_1), T(e_2), ..., T(e_n)]$.

• When Ax = b has at most one solution in stated in Ch.1.5, Theorem 6.

ONE-TO-ONE MAPPINGS

Theorem 6: Suppose the equation Ax = b is consistent for some given **b**, and let **p** be a solution. Then the solution set of Ax = b is the set of all vectors of the form $\mathbf{w} = \mathbf{p} + \mathbf{v}_h$, where \mathbf{v}_h is any solution of the homogeneous equation Ax = 0.

Hence if Ax = b has a solution, then it has as many solutions as the equation Ax = 0. It follows:

Theorem: Let T: $\mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation and let A be the standard matrix for T. Then *T* is one-to-one if and only if the equation T(x) = Ax = 0 has **only the trivial solution**.

ONTO AND ONE-TO-ONE MAPPINGS - SUMMARY

- **Theorem 12**: Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation and let A be the standard matrix for T. Then:
- a) T maps \mathbb{R}^n onto \mathbb{R}^m if and only if the columns of A span \mathbb{R}^m .
- b) T is **one-to-one** if and only if the **columns of** A **are linearly independent**.

A more practical version is

- **Theorem**: Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation and let A be the standard matrix for T. Then:
- a) T maps \mathbb{R}^n onto \mathbb{R}^m if and only if A has a pivot in every row.
- b) T is **one-to-one** if and only if the echelon form U of A has a **pivot in every column**.

ONTO AND ONE-TO-ONE MAPPINGS

Example: Let T: $\mathbb{R}^4 \to \mathbb{R}^3$ be the linear transformation, such that

$$T(e_1) = \begin{bmatrix} 1 \\ -1 \\ -2 \end{bmatrix}, T(e_2) = \begin{bmatrix} -2 \\ 3 \\ 4 \end{bmatrix}, T(e_3) = \begin{bmatrix} 3 \\ -7 \\ -6 \end{bmatrix}$$
 and $T(e_4) = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$.

- 1.) Does T map \mathbb{R}^4 onto \mathbb{R}^3 ?
- 2.) Is *T* a one-to-one mapping?
- 3.) Find the x in \mathbb{R}^4 , such that T(x) = 0.

Solution:

ONTO AND ONE-TO-ONE MAPPINGS