Math 22 -
Linear Algebra and its applications

- Lecture 8 -

Instructor: Bjoern Muetzel

GENERAL INFORMATION

- Office hours: Tu 1-3 pm, Th, Sun 2-4 pm in KH 229
- Tutorial: Tu, Th, Sun 7-9 pm in KH 105
- Attention: This Thursday the x-hour will be a lecture:

Section 1: 12:15-1:05 pm in Kemeny 007 Section 2: 1:20-2:10 pm in Kemeny 007 office hour will start at $2: 15 \mathrm{pm}$.

- Midterm 1: Monday Oct 7 from 4-6 pm in Carpenter 013

Topics: till this Thursday (included)
You can find the practice exam online

1

Linear Equations in Linear Algebra

1.9

THE MATRIX OF A LINEAR TRANSFORMATION

Linear Algebra AND ITS APPLICATIONS

FIFTH EDITION
David C. Lay • Steven R. Lay • Judi J. McDonald

- Summary:
1.) In finite dimensions linear and matrix transformations are the same.
2.) We find conditions that show us when a linear transformation maps onto the whole codomain and when it is one-to-one.

GEOMETRIC LINEAR TRANSFORMATIONS OF \mathbb{R}^{2}

A linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is completely determined by the two images $T\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]\right)$ and $T\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right.$:

GEOMETRIC LINEAR TRANSFORMATIONS OF \mathbb{R}^{2}

- Example: The transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by

$$
T\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=\left[\begin{array}{cc}
\cos (t) & -\sin (t) \\
\sin (t) & \cos (t)
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

is a rotation around the origin with angle t.

GEOMETRIC LINEAR TRANSFORMATIONS OF \mathbb{R}^{2}

Example: Reflections:

Reflection through the x_{2}-axis

Reflection through the line $x_{2}=x_{1}$
$\left[\begin{array}{rr}-1 & 0 \\ 0 & 1\end{array}\right]$
$\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$

GEOMETRIC LINEAR TRANSFORMATIONS OF \mathbb{R}^{2}

TABLE 2 Contractions and Expansions

Transformation
Horizontal contraction and expansion

Vertical contraction and expansion

$k>1$

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & k
\end{array}\right]
$$

GEOMETRIC LINEAR TRANSFORMATIONS OF \mathbb{R}^{2}

TABLE 3 Shears

GEOMETRIC LINEAR TRANSFORMATIONS OF \mathbb{R}^{2}

TABLE 4 Projections

Transformation

Image of the Unit Square

Standard Matrix

Projection onto the x_{1}-axis

$\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$

Projection onto
the x_{2}-axis

THE MATRIX OF A LINEAR TRANSFORMATION

- Theorem 10: Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation. Then there exists a unique matrix A such that

$$
T(x)=A x \text { for all } \mathrm{x} \text { in } \mathbb{R}^{n}
$$

- In fact, A is the $\mathrm{m} \times n$ matrix whose $j^{\text {th }}$ column is the vector $T\left(e_{j}\right)$, where e_{j} is the $j^{\text {th }}$ column of the identity matrix in \mathbb{R}^{n} :

$$
A=\left[T\left(e_{1}\right), T\left(e_{2}\right), \ldots, T\left(e_{n}\right)\right]
$$

" Proof:

THE MATRIX OF A LINEAR TRANSFORMATION

- Note 1: The set of vectors $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ in \mathbb{R}^{n} is called a standard basis of \mathbb{R}^{n}.
- Note 2: The matrix $A=\left[T\left(e_{1}\right), T\left(e_{2}\right), \ldots, T\left(e_{n}\right)\right]$ is called the standard matrix for the linear transformation T.
- Note 3: Theorem 10 implies that every linear transformation from \mathbb{R}^{n} to \mathbb{R}^{m} can be viewed as a matrix transformation, and vice versa.

THE MATRIX OF A LINEAR TRANSFORMATION

- Example : Find the standard matrix A for the transformation $T(x)=3 x$, for x in \mathbb{R}^{2}.
- Solution:

ONTO MAPPINGS

- Definition: A mapping $\mathrm{T}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is said to be onto \mathbb{R}^{n} if each \mathbf{b} in \mathbb{R}^{m} is the image of at least one \mathbf{x} in \mathbb{R}^{n}. In other words the range of T is the whole codomain of T.

FIGURE 3 Is the range of T all of \mathbb{R}^{m} ?

ONTO MAPPINGS

When is a map onto?

- T maps \mathbb{R}^{n} onto \mathbb{R}^{m} if, for each \mathbf{b} in \mathbb{R}^{m}, there exists a solution x in \mathbb{R}^{n} of $T(\mathrm{x})=\mathrm{b}$.
- Translating this problem into matrix notation we get

$$
T(x)=A x=b, \text { where } A=\left[T\left(e_{1}\right), T\left(e_{2}\right), \ldots, T\left(e_{n}\right)\right]
$$

- When $T(x)=A x=b$ has always a solution in stated in Ch.1.4, Theorem 4.

ONTO MAPPINGS

Theorem 4: Let A be an $m \times n$ matrix. Then the following statements are logically equivalent.
a. For each \mathbf{b} in \mathbb{R}^{m}, the equation $A \mathrm{x}=\mathrm{b}$ has a solution.
b. Each \mathbf{b} in \mathbb{R}^{m} is a linear combination of the columns of A.
c. The columns of A span \mathbb{R}^{m}.
d. A has a pivot position in every row.

Hence we can conclude using just d.:

- Theorem: Let $\mathrm{T}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation and let A be the standard matrix for T. Then T maps \mathbb{R}^{n} onto \mathbb{R}^{m} if and only if A has a pivot position in every row.

ONE-TO-ONE MAPPINGS

Definition: A mapping $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is said to be one-to-one if each \mathbf{b} in \mathbb{R}^{m} is the image of at most one \mathbf{x} in \mathbb{R}^{n}.

In other words for each \mathbf{b} in the range of \boldsymbol{T} there is exactly one \mathbf{x} in \mathbb{R}^{n} in such that $T(x)=b$.

T is not one-to-one

T is one-to-one

ONE-TO-ONE MAPPINGS

When is a map one-to-one?

- T is one-to-one if, for each \mathbf{b} in \mathbb{R}^{m}, there exists at most one solution x in \mathbb{R}^{n} of $T(\mathrm{x})=\mathrm{b}$.
- Translating this problem into matrix notation we get

$$
T(x)=A x=b, \text { where } A=\left[T\left(e_{1}\right), T\left(e_{2}\right), \ldots, T\left(e_{n}\right)\right]
$$

- When $A x=b$ has at most one solution in stated in

Ch.1.5, Theorem 6.

ONE-TO-ONE MAPPINGS

- Theorem 6: Suppose the equation $A x=b$ is consistent for some given \mathbf{b}, and let \mathbf{p} be a solution. Then the solution set of $A \mathrm{x}=\mathrm{b}$ is the set of all vectors of the form $\mathbf{w}=\mathbf{p}+\mathbf{v}_{h}$, where \mathbf{v}_{h} is any solution of the homogeneous equation $A x=0$.

Hence if $A x=b$ has a solution, then it has as many solutions as the equation $A x=0$. It follows:

- Theorem: Let $\mathrm{T}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation and let A be the standard matrix for T . Then T is one-to-one if and only if the equation $T(x)=A x=0$ has only the trivial solution.

ONTO AND ONE-TO-ONE MAPPINGS - SUMMARY

- Theorem 12: Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation and let A be the standard matrix for T. Then:
a) T maps \mathbb{R}^{n} onto \mathbb{R}^{m} if and only if the columns of \boldsymbol{A} span \mathbb{R}^{m}.
b) T is one-to-one if and only if the columns of \boldsymbol{A} are linearly independent.

A more practical version is

- Theorem: Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation and let A be the standard matrix for T. Then:
a) T maps \mathbb{R}^{n} onto \mathbb{R}^{m} if and only if A has a pivot in every row.
b) T is one-to-one if and only if the echelon form U of A has a pivot in every column.

ONTO AND ONE-TO-ONE MAPPINGS

- Example: Let $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ be the linear transformation, such that

$$
T\left(e_{1}\right)=\left[\begin{array}{c}
1 \\
-1 \\
-2
\end{array}\right], T\left(e_{2}\right)=\left[\begin{array}{c}
-2 \\
3 \\
4
\end{array}\right], T\left(e_{3}\right)=\left[\begin{array}{c}
3 \\
-7 \\
-6
\end{array}\right] \text { and } T\left(e_{4}\right)=\left[\begin{array}{l}
1 \\
2 \\
4
\end{array}\right] .
$$

1.) Does T map \mathbb{R}^{4} onto \mathbb{R}^{3} ?
2.) Is T a one-to-one mapping?
3.) Find the x in \mathbb{R}^{4}, such that $T(x)=0$.

Solution:

ONTO AND ONE-TO-ONE MAPPINGS

