Math 22 – Linear Algebra and its applications

- Lecture 7 -

Instructor: Bjoern Muetzel

- **Office hours:** Tu 1-3 pm, Th, Sun 2-4 pm in KH 229
- **Tutorial: Tu**, Th, Sun 7-9 pm in KH 105
- Homework: Homework 2 due Wednesday at 4 pm in the boxes outside Kemeny 008. Separate your homework into part A, part B, part C and part D and staple it.
- Midterm 1: Monday Oct 7 from 4-6 pm in Carpenter 013
 Topics: till this Thursday (included)

Linear Equations in Linear Algebra

1.8

INTRODUCTION TO LINEAR TRANSFORMATIONS

Summary: If a transformation T from Rⁿ to R^m is linear, then it maps Euclidean subspaces to Euclidean subspaces.

GEOMETRIC INTERPRETATION

Example:

GEOMETRIC INTERPRETATION

TRANSFORMATIONS

- Definition: A transformation (or function or mapping)
 - *T* from \mathbb{R}^n to \mathbb{R}^m is a rule that assigns to each vector **x** in \mathbb{R}^n a vector $T(\mathbf{x})$ in \mathbb{R}^m .
- The set Rⁿ is called domain of T, and R^m is called the codomain of T.
- We use the notation

 $T: \mathbf{R}^n \to \mathbf{R}^m \; .$

TRANSFORMATIONS

- **Definition:** Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a transformation or mapping.
- For x in Rⁿ, the vector T (x) in R^m is called the image of x (under the action of T).
- The set of all images $T(\mathbf{x})$ is called the **range** of *T*.

- <u>Definition</u>: Let A be an $m \times n$ matrix. A matrix transformation is the associated map given by $T(\mathbf{x}) = \mathbf{A}\mathbf{x}$, for any x in \mathbf{R}^n
- For simplicity, we denote such a matrix transformation often by $x \mapsto Ax$.
- As each column of A has m columns, the domain of T is Rⁿ and the codomain of T is R^m.

of $T: \mathbb{R}^n \to \mathbb{R}^m$.

LINEAR TRANSFORMATIONS

- Definition: A transformation (or mapping) T: Rⁿ → R^m is linear if:
 - i. $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ for all \mathbf{u} , \mathbf{v} in \mathbf{R}^n .
 - ii. $T(c\mathbf{u}) = cT(\mathbf{u})$ for all c in **R** and all \mathbf{u} in \mathbf{R}^n .

A matrix transformation A: Rⁿ → R^m, x → Ax
is always linear as for all u, v in Rⁿ and c in R:
a) A(u+v) = Au + Av
b) A(cu) = cAu

LINEAR TRANSFORMATIONS

Consequences:

• As
$$T(u+v) = T(u) + T(v)$$
 and $T(cu) = cT(u)$ we have:
iii. $T(0) = 0$
iv. $T(c_1v_1 + ... + c_pv_p) = c_1T(v_1) + ... + c_pT(v_p)$

• If $\mathbf{v}_1, \ldots, \mathbf{v}_p$ in \mathbf{R}^n are vectors then *iv*. implies that

$$T(\operatorname{Span}\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}) = \operatorname{Span}\{T(\mathbf{v}_1), \ldots, T(\mathbf{v}_p)\}$$

Proof:

LINEAR TRANSFORMATIONS

Consequences:

iv.
$$T(c_1 v_1 + ... + c_p v_p) = c_1 T(v_1) + ... + c_p T(v_p)$$

- In engineering and physics, iv. is referred to as a *superposition principle*.
- Think of v₁, ..., v_p as signals that go into a system and
 T (v₁), ..., T (v_p) as the responses of that system to the signals.
- The system satisfies the superposition principle if whenever an input is expressed as a linear combination of such signals, the system's response is the *same* linear combination of the responses to the individual signals.

MATRIX TRANSFORMATIONS

Example: Let
$$A = \begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{bmatrix}$$
, $u = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$, $b = \begin{bmatrix} 3 \\ 2 \\ -5 \end{bmatrix}$ and $c = \begin{bmatrix} 3 \\ 2 \\ 5 \end{bmatrix}$

and define a transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ by T(x) = Ax.

- a. Find $T(\mathbf{u})$, the image of \mathbf{u} under the transformation T.
- **b**. Find an **x** in \mathbf{R}^n whose image under *T* is **b**.
- c. Is there more than one **x** whose image under *T* is **b**?
- d. Determine if \mathbf{c} is in the range of the transformation T.

MATRIX TRANSFORMATIONS

٠

Solution:

MATRIX TRANSFORMATIONS

SHEAR TRANSFORMATION

• Example 2: Let $A = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}$. The transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $T(\mathbf{x}) = A\mathbf{x}$ is called a shear transformation.

• The image of the square below is a parallelogram:

Example: Given a scalar *r*, define $T: \mathbb{R}^2 \to \mathbb{R}^2$ by $T(\mathbf{x}) = r\mathbf{x}$.

• *T* is called a **contraction** when $0 \le r \le 1$ and a **dilation** when r > 1.

Example: Let $T: \mathbf{R}^2 \to \mathbf{R}^2$ be given by $T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} \cos(t) & -\sin(t) \\ \sin(t) & \cos(t) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}.$

• *T* is called a **rotation with angle t**.