Math 22 -
Linear Algebra and its applications

- Lecture 7 -

Instructor: Bjoern Muetzel

GENERAL INFORMATION

- Office hours: Tu 1-3 pm, Th, Sun 2-4 pm in KH 229
- Tutorial: Tu, Th, Sun 7-9 pm in KH 105
- Homework: Homework 2 due Wednesday at 4 pm in the boxes outside Kemeny 008. Separate your homework into part A, part B, part C and part D and staple it.
- Midterm 1: Monday Oct 7 from 4-6 pm in Carpenter 013 Topics: till this Thursday (included)

1

Linear Equations in Linear Algebra

1.8

INTRODUCTION TO LINEAR TRANSFORMATIONS

LINEAR TRANSFORMATIONS

- Summary: If a transformation T from \mathbf{R}^{n} to \mathbf{R}^{m} is linear, then it maps Euclidean subspaces to Euclidean subspaces.

GEOMETRIC INTERPRETATION

- Example:

GEOMETRIC INTERPRETATION

TRANSFORMATIONS

- Definition: A transformation (or function or mapping)
T from \mathbf{R}^{n} to \mathbf{R}^{m} is a rule that assigns to each vector \mathbf{x} in \mathbf{R}^{n} a vector $T(\mathbf{x})$ in \mathbf{R}^{m}.
- The set \mathbf{R}^{n} is called domain of T, and \mathbf{R}^{m} is called the codomain of T.
- We use the notation

$$
T: \mathbf{R}^{\mathrm{n}} \rightarrow \mathbf{R}^{\mathrm{m}}
$$

TRANSFORMATIONS

- Definition: Let $T: \mathbf{R}^{\mathrm{n}} \rightarrow \mathbf{R}^{\mathrm{m}}$ be a transformation or mapping.
- For \mathbf{x} in \mathbf{R}^{n}, the vector $T(\mathbf{x})$ in \mathbf{R}^{m} is called the image of \mathbf{x} (under the action of T).
- The set of all images $T(\mathbf{x})$ is called the range of T.

Domain, codomain, and range of $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.

MATRIX TRANSFORMATIONS

- Definition: Let A be an $m \times n$ matrix. A matrix transformation is the associated map given by $\boldsymbol{T}(\mathbf{x})=\mathbf{A x}$, for any x in \mathbf{R}^{n}
- For simplicity, we denote such a matrix transformation often by

$$
\mathrm{x} \mapsto A \mathrm{x}
$$

- As each column of A has m columns, the domain of T is \mathbf{R}^{n} and the codomain of T is \mathbf{R}^{m}.

Domain, codomain, and range of $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.

LINEAR TRANSFORMATIONS

- Definition: A transformation (or mapping) $T: \mathbf{R}^{\mathrm{n}} \rightarrow \mathbf{R}^{\mathrm{m}}$ is linear if:
i. $\quad T(\mathrm{u}+\mathrm{v})=T(\mathrm{u})+T(\mathrm{v})$ for all \mathbf{u}, \mathbf{v} in \mathbf{R}^{n}.
ii. $\quad T(c \mathrm{u})=c T(\mathrm{u}) \quad$ for all c in \mathbf{R} and all \mathbf{u} in \mathbf{R}^{n}.

A matrix transformation $\mathrm{A}: \mathbf{R}^{\mathrm{n}} \rightarrow \mathbf{R}^{\mathrm{m}}, \mathrm{x} \mapsto A \mathrm{x}$ is always linear as for all \mathbf{u}, \mathbf{v} in \mathbf{R}^{n} and c in \mathbf{R} :
a) $\mathrm{A}(\mathrm{u}+\mathrm{v})=\mathrm{Au}+\mathrm{Av}$
b) $\mathrm{A}(\mathrm{cu})=\mathrm{cAu}$

LINEAR TRANSFORMATIONS

- Consequences:
- As $T(\mathrm{u}+\mathrm{v})=T(\mathrm{u})+T(\mathrm{v})$ and $T(c \mathrm{u})=c T(\mathrm{u})$ we have:

$$
\begin{array}{cc}
\text { iii. } & T(0)=0 \\
\text { iv. } & T\left(c_{1} \mathrm{v}_{1}+\ldots+c_{p} \mathrm{v}_{p}\right)=c_{1} T\left(\mathrm{v}_{1}\right)+\ldots+c_{p} T\left(\mathrm{v}_{p}\right)
\end{array}
$$

- If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ in \mathbf{R}^{n} are vectors then $i v$. implies that

$$
T\left(\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}\right)=\operatorname{Span}\left\{T\left(\mathbf{v}_{1}\right), \ldots, T\left(\mathbf{v}_{p}\right)\right\}
$$

Proof:

LINEAR TRANSFORMATIONS

- Consequences:

$$
\text { iv. } T\left(c_{1} \mathrm{v}_{1}+\ldots+c_{p} \mathrm{v}_{p}\right)=c_{1} T\left(\mathrm{v}_{1}\right)+\ldots+c_{p} T\left(\mathrm{v}_{p}\right)
$$

- In engineering and physics, iv. is referred to as a superposition principle.
- Think of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ as signals that go into a system and $T\left(\mathbf{v}_{1}\right), \ldots, T\left(\mathbf{v}_{p}\right)$ as the responses of that system to the signals.
- The system satisfies the superposition principle if whenever an input is expressed as a linear combination of such signals, the system's response is the same linear combination of the responses to the individual signals.

MATRIX TRANSFORMATIONS

Example: Let $A=\left[\begin{array}{rr}1 & -3 \\ 3 & 5 \\ -1 & 7\end{array}\right], \mathrm{u}=\left[\begin{array}{c}2 \\ -1\end{array}\right], b=\left[\begin{array}{c}3 \\ 2 \\ -5\end{array}\right]$ and $\mathrm{c}=\left[\begin{array}{l}3 \\ 2 \\ 5\end{array}\right]$ and define a transformation $T: \mathbf{R}^{\mathrm{n}} \rightarrow \mathbf{R}^{\mathrm{m}}$ by $T(\mathrm{x})=A \mathrm{x}$.
a. Find $T(\mathbf{u})$, the image of \mathbf{u} under the transformation T.
b. Find an \mathbf{x} in \mathbf{R}^{n} whose image under T is \mathbf{b}.
c. Is there more than one \mathbf{x} whose image under T is \mathbf{b} ?
d. Determine if \mathbf{c} is in the range of the transformation T.

MATRIX TRANSFORMATIONS

- Solution:

MATRIX TRANSFORMATIONS

SHEAR TRANSFORMATION

- Example 2: Let $A=\left[\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right]$. The transformation $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ defined by $T(\mathrm{x})=A \mathrm{x}$ is called a shear transformation.
- The image of the square below is a parallelogram:

SCALAR MULTIPLICATION

Example: Given a scalar r, define $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ by

$$
T(\mathrm{x})=r \mathrm{x} .
$$

- T is called a contraction when $0 \leq r \leq 1$ and a dilation when $r>1$.

ROTATION

Example: Let $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be given by

$$
T\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=\left[\begin{array}{cc}
\cos (t) & -\sin (t) \\
\sin (t) & \cos (t)
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] .
$$

- T is called a rotation with angle t.

