Math 22 -
Linear Algebra and its applications

- Lecture 6 -

Instructor: Bjoern Muetzel

GENERAL INFORMATION

- Office hours: Tu 1-3 pm, Th, Sun 2-4 pm in KH 229
- Tutorial: Tu, Th, Sun 7-9 pm in KH 105
- Homework: Homework 2 due next Wednesday at 4 pm in the boxes outside Kemeny 008. Separate your homework into part A, part B and part C and D and staple it.

1

Linear Equations in Linear Algebra

1.7

LINEAR INDEPENDENCE

LINEAR INDEPENDENCE

- Summary: $\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ might be generated by less than p vectors. In this case the list $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ is redundant.
- This is equal to saying that the vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ are linearly dependent.

LINEAR INDEPENDENCE

- Definition: An indexed set of vectors $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ in \mathbf{R}^{n} is said to be linearly independent if the vector equation

$$
x_{1} \mathrm{v}_{1}+x_{2} \mathrm{v}_{2}+\ldots+x_{p} \mathrm{v}_{p}=0
$$

has only the trivial solution $\mathrm{x}_{1}=\mathrm{x}_{2}=\ldots=\mathrm{x}_{\mathrm{p}}=0$.

Otherwise the set $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is said to be linearly dependent. This means that there exist weights c_{1}, \ldots, c_{p}, not all zero, such that

$$
\begin{equation*}
c_{1} \mathrm{v}_{1}+c_{2} \mathrm{v}_{2}+\ldots+c_{p} \mathrm{v}_{p}=0 \tag{1}
\end{equation*}
$$

Equation (1) is called a linear dependence relation among
$\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ when the weights are not all zero.

GEOMETRIC INTERPRETATION

- Example:

GEOMETRIC INTERPRETATION

LINEAR INDEPENDENCE IN MATRIX NOTATION

- Suppose that we begin with a matrix $A=\left[\begin{array}{lll}\mathrm{a}_{1} & \cdots & \mathrm{a}_{n}\end{array}\right]$ instead of a set of vectors.
- The matrix equation $A x=0$ can be written as

$$
x_{1} \mathrm{a}_{1}+x_{2} \mathrm{a}_{2}+\ldots+x_{n} \mathrm{a}_{n}=0 .
$$

- The columns of A are linearly dependent, if and only if $A \mathrm{x}=0$ has nontrivial solutions.
- Thus, the columns of matrix A are linearly independent if and only if the equation $A x=0$ has only the trivial solution.

LINEAR INDEPENDENCE

- Example 1: Let $\mathrm{v}_{1}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right], \mathrm{v}_{2}=\left[\begin{array}{l}4 \\ 5 \\ 6\end{array}\right]$ and $\mathrm{v}_{3}=\left[\begin{array}{c}2 \\ 1 \\ 0\end{array}\right]$.
a. Determine if the set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is linearly independent.
b. If possible, find a linear dependence relation among $\mathbf{v}_{1}, \mathbf{v}_{2}$, and \mathbf{v}_{3}.

LINEAR INDEPENDENCE

THE ZERO VECTOR

- Theorem: If a set $S=\left\{\mathrm{v}_{1}, \ldots, \mathrm{v}_{p}\right\}$ in \mathbf{R}^{n} contains the zero vector, then the set is linearly dependent.
- Proof:

By renumbering the vectors, we may suppose that $\mathrm{v}_{1}=0$. Then the equation shows that S is
linearly dependent.

SETS OF ONE VECTOR

- A set containing only one vector - say, \mathbf{v} - is linearly independent if and only if \mathbf{v} is not the zero vector.

SETS OF TWO VECTORS

- A set of two vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is linearly dependent if at least one of the vectors is a multiple of the other.
- The set is linearly independent if and only if neither of the vectors is a multiple of the other.

SETS OF TWO OR MORE VECTORS

- Theorem 7: (Characterization of Linearly Dependent Sets) An indexed set $S=\left\{\mathrm{v}_{1}, \ldots, \mathrm{v}_{p}\right\}$ of two or more vectors is linearly dependent if and only if at least one of the vectors in S is a linear combination of the others.
- This is equal to saying that there exists some \mathbf{v}_{j} in $\mathbf{v}_{l}, \ldots, \mathbf{v}_{p}$ such that

$$
\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}=\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{\mathbf{j}-1,}, \mathbf{v}_{\mathrm{j}+1}, \ldots, \mathbf{v}_{p}\right\}
$$

SETS OF TWO OR MORE VECTORS

- Proof:

SETS OF TWO OR MORE VECTORS

- Note 1: Theorem 7 does NOT imply that EVERY vector in a linearly dependent set is a linear combination of the preceding vectors.
- Note 2: A vector in a linearly dependent set may fail to be a linear combination of the other vectors.
- Example for Note 2: For $\mathrm{v}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], \mathrm{v}_{2}=\left[\begin{array}{l}2 \\ 0 \\ 0\end{array}\right]$ and $\mathrm{v}_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$
$\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right\}$ are linearly dependent, but v_{3} can not be written as a linear combination of the other two vectors.

SETS OF TWO OR MORE VECTORS

- Theorem 8: If a set contains more vectors than there are entries in each vector, then the set is linearly dependent. That is, any set $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ in \mathbf{R}^{n} is linearly dependent if $p>n$.
- Proof: Let $A=\left[\begin{array}{lll}\mathrm{v}_{1} & \cdots & \mathrm{v}_{p}\end{array}\right]$.
- Then A is $n \times p$, and the equation $A \mathrm{x}=0$ corresponds to a system of n equations in p unknowns.
- If $p>n$, there are more variables than equations, so there must be a \qquad variable.
- Hence $A x=0$ has a nontrivial solution, and the columns of A are linearly dependent.

SETS OF TWO OR MORE VECTORS

- Note: Theorem 8 says nothing about the case in which the number of vectors in the set does not exceed the number of entries in each vector.

SETS OF TWO OR MORE VECTORS

- Example: Let $u=\left[\begin{array}{l}3 \\ 1 \\ 0\end{array}\right]$ and $v=\left[\begin{array}{l}1 \\ 6 \\ 0\end{array}\right]$. Describe the
set spanned by \mathbf{u} and \mathbf{v}, and explain why a vector \mathbf{w} is in Span $\{\mathbf{u}, \mathbf{v}\}$ if and only if $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is linearly dependent.

SETS OF TWO OR MORE VECTORS

- Solution:

