Math 22 – Linear Algebra and its applications

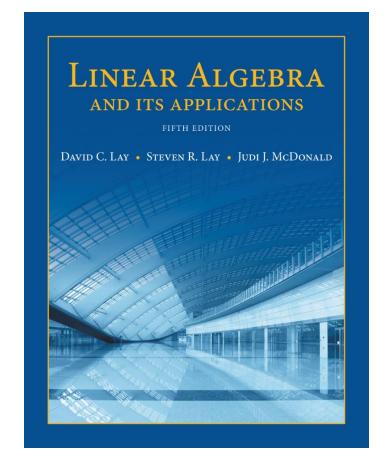
- Lecture 5 -

Instructor: Bjoern Muetzel

GENERAL INFORMATION

• **Office hours:** Tu 1-3 pm, Th, **Sun** 2-4 pm in KH 229

• **Tutorial:** Tu, Th, **Sun** 7-9 pm in KH 105


■ Homework: Homework 2 due next Wednesday at 4 pm in the boxes outside Kemeny 008. Separate your homework into part A, part B, part C and part D and staple it.

1

Linear Equations in Linear Algebra

1.6

APPLICATIONS OF LINEAR SYSTEMS

WHY LINEAR ALGEBRA?

- 1.) Almost all functions can be approximated by piecewise linear functions
- 2.) 20 % of all CPU time goes into solving linear equations
- 3.) Mastering Linear Algebra is essential for all basic sciences

A SIMPLE ECONOMY

Example: Our sandbox economy has a three sectors:

Coal (C), Electricity (E) and Steel (S).

Let $\mathbf{pc} = \text{price of the total amount of output of } \mathbf{coal}$

pe = price of the total amount of output of **electricity**

 $\mathbf{p}\mathbf{s} = \mathbf{price}$ of the total amount of output of **steel**

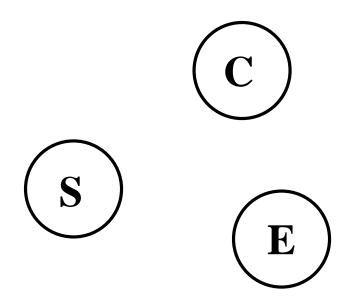

• We know that the **output of goods** is distributed in the following way:

TABLE 1 A Simple Economy

Dietribution of Output from

Distribution of Output from:				
Coal	Electric	Steel	Purchased by:	
.0	.4	.6	Coal	
.6	.1	.2	Electric	
.4	.5	.2	Steel	

Exercise: Draw a flow diagram for the output of goods.

Goal: Set up the equations for **p**c, **p**e and **p**s under the assumption that the system is closed i.e. no money leaves the system.

A SIMPLE ECONOMY

BALANCING A CHEMICAL EQUATION

Example: Burning propane.

$$(x_1)C_3H_8 + (x_2)O_2 \rightarrow (x_3)CO_2 + (x_4)H_2O$$

Goal: We want to balance this equation.

NETWORK FLOW

Example: One way streets in Baltimore.

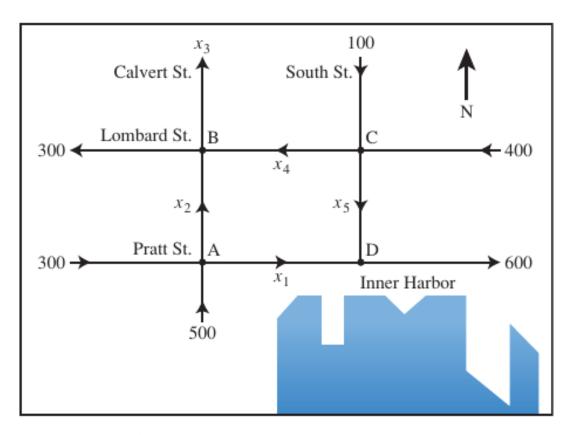


FIGURE 2 Baltimore streets.

Goal: Examine the flow of cars.

NETWORK FLOW

Example: One way streets in Baltimore.

NETWORK FLOW

Example: One way streets in Baltimore.