Math 22 -
Linear Algebra and its applications

- Lecture 4 -

Instructor: Bjoern Muetzel

GENERAL INFORMATION

- Office hours: Tu 1-3 pm, Th, Su 2-4 pm in KH 229
- Tutorial: Tu, Th, Sun 7-9 pm in KH 105
- Homework: Homework 1 due today at 4 pm in the boxes outside Kemeny 008. Separate your homework into part A, part B and part C and staple it.
- Attention: This Thursday the \mathbf{x}-hour will be a lecture: Section 1: 12:15-1:05 pm in Kemeny 007 Section 2: 1:20-2:10 pm in Kemeny 007

1

Linear Equations in Linear Algebra

1.4

THE MATRIX EQUATION $A x=b$ AND
SOLUTION SETS OF LINEAR EQUATIONS

Linear Algebra AND ITS APPLICATIONS

FIFTH EDITION
David C. Lay • Steven R. Lay • Judi J. McDonald

Aims:

1.) Find out which properties a coefficient matrix \mathbf{A} of a system of linear equations with augmented matrix [A|b] must have, such that the system has a solution for any vector b.
2.) Refinement / Reinterpretation of the description of the solution set of a system of linear equations in terms of vectors.

GEOMETRIC INTERPRETATION

- Example:

GEOMETRIC INTERPRETATION

MATRIX VECTOR MULTIPLICATION

- Definition: If A is an $m \times n$ matrix, with columns $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$, and if \mathbf{x} is in \mathbf{R}^{n}, then the product of A and \mathbf{x}, denoted by $A \mathbf{x}$, is the linear combination of the columns of A using the corresponding entries of \mathbf{x} as weights; that is,
$A \mathrm{x}=\left[\begin{array}{llll}\mathrm{a}_{1} & \mathrm{a}_{2} & \cdots & \mathrm{a}_{n}\end{array}\right]\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right]=x_{1} \mathrm{a}_{1}+x_{2} \mathrm{a}_{2}+\ldots+x_{n} \mathrm{a}_{n}$.
- Note: $A x$ is defined only if the number of columns of A equals the number of entries in \mathbf{x}.

Theorem: If A is an $m \times n$ matrix, \mathbf{u} and \mathbf{v} are vectors in \mathbf{R}^{n} and c is a number, then
a. $A(\mathbf{u}+\mathbf{v})=A \mathbf{u}+A \mathbf{v}$
b. $A(\mathbf{c u})=\mathrm{c}(A \mathbf{u})$.

Proof:

MATRIX VECTOR MULTIPLICATION

Example: Compute $A \mathbf{x}$, where

$$
A=\left[\begin{array}{rrr}
2 & 3 & 4 \\
-1 & 5 & -3 \\
6 & -2 & 8
\end{array}\right] \quad \text { and } \quad \mathrm{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] .
$$

- Solution:

MATRIX VECTOR MULTIPLICATION

- Now, write a system of linear equations as a vector equation involving a linear combination of vectors.
- Example: The following system

$$
\begin{gather*}
x_{1}+2 x_{2}-x_{3}=4 \tag{1}\\
-5 x_{2}+3 x_{3}=1
\end{gather*}
$$

is equivalent to

MATRIX EQUATION $A x=b$

- Theorem 3: If A is an $m \times n$ matrix, with columns $\mathbf{a}_{1}, \ldots, \mathbf{a}_{\mathbf{n}}$, and if b is in \mathbf{R}^{n}, then the matrix equation

$$
A \mathbf{x}=\mathbf{b}
$$

has the same solution set as the vector equation

$$
x_{1} \mathrm{a}_{1}+x_{2} \mathrm{a}_{2}+\ldots+x_{n} a_{n}=\mathrm{b}
$$

which, in turn, has the same solution set as the system of linear equations whose augmented matrix is

$$
\left[\begin{array}{lllll}
\mathrm{a}_{1} & \mathrm{a}_{2} & \cdots & \mathrm{a}_{n} & \mathrm{~b}
\end{array}\right]
$$

MATRIX EQUATION Ax = b

- Definition: The matrix with 1 s on the diagonal and 0s elsewhere is called an identity matrix and is denoted by I.

Example:

$$
I_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

- Definition: We say that the columns of the $m \times p$ matrix
$A=\left[\mathbf{a}_{1}, \ldots, \mathbf{a}_{\mathbf{p}}\right]$, span \mathbf{R}^{m}, if every vector \mathbf{b} in \mathbf{R}^{m} is a linear combination of $\mathbf{a}_{1}, \ldots, \mathbf{a}_{p}$, i.e.

$$
\operatorname{Span}\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{\mathbf{p}}\right\}=\mathbf{R}^{\mathrm{m}}
$$

EXISTENCE OF SOLUTIONS

The equation $A \mathbf{x}=\mathbf{b}$ has a solution if and only if \mathbf{b} is a linear combination of the columns of A.

Theorem 4: Let A be an $m \times n$ matrix. Then the following statements are logically equivalent. That is, for a particular A, either they are all true statements or they are all false.
a. For each \mathbf{b} in \mathbf{R}^{m}, the equation $A \mathbf{x}=\mathbf{b}$ has a solution.
b. Each \mathbf{b} in \mathbf{R}^{m} is a linear combination of the columns of A.
c. The columns of A span \mathbf{R}^{m}.
d. A has a pivot position in every row.

Proof of Theorem 4:

- Statements (a), (b), and (c) are logically equivalent. So, it suffices to show that (a) and (d) are either both true or false. Idea: Look at the echelon form of A. Let U be an echelon form of a matrix A. Given \mathbf{b} in \mathbf{R}^{m}, we can row reduce the augmented matrix $[\mathrm{A} \mid \mathbf{b}]$ to an augmented matrix [U|d] for some \mathbf{d} in \mathbf{R}^{m} :
- (d) implies (a):

If statement (d) is true, then each row of U contains a pivot position, which asserts that the linear system corresponding to $[\mathrm{A} \mid \mathrm{b}]$ and [U|d] has a solution, independent of \mathbf{b} or \mathbf{d}.
So $[A \mid b]$ has a solution for any \mathbf{b}, and (a) is true. So (d) implies (a).

PROOF OF THEOREM 4

- (a) implies (d): This is equivalent to the statement: If (d) is false, then (a) is false.
- If (d) is false then the last row of U is all zeros.

Let \mathbf{d} be any vector with a 1 in its last entry.
Then [U|d] has no solution.

- Since row operations are reversible, [U|d] can be transformed into the form $[\mathrm{A} \mid \mathrm{b}]$.
- The new system $A \mathbf{x}=\mathbf{b}$ has also no solution, and (a) is false.

HOMOGENEOUS LINEAR SYSTEMS

Aim: Refinement / Reinterpretation of the parametric description of the solution set of a system of linear equations.

HOMOGENEOUS LINEAR SYSTEMS

- A system of linear equations is said to be homogeneous if it can be written in the form $A \mathbf{x}=\mathbf{0}$, where A is an $m \times n$ matrix and 0 is the zero vector in \mathbf{R}^{m}
- Such a system $A \mathbf{x}=\mathbf{0}$ always has at least one solution,

$$
\text { namely } \mathbf{x}=\mathbf{0} \text { in } \mathbf{R}^{\mathrm{n}}
$$

- This zero solution is usually called the trivial solution.
- The homogeneous equation $A \mathbf{x}=\mathbf{0}$ has a nontrivial solution if and only if the equation has at least one free variable.
- A system of linear equations is said to be nonhomogeneous if it can be written in the form $A \mathbf{x}=\mathbf{b}$, where \mathbf{b} not $\mathbf{0}$.

HOMOGENEOUS LINEAR SYSTEMS

- Example: Determine the solution of the
1.) homogeneous system $A \mathbf{x}=\mathbf{0}$
2.) nonhomogeneous system $A \mathbf{x}=\mathbf{b}$, where

$$
A=\left[\begin{array}{rrr}
3 & 5 & -4 \\
-3 & -2 & 4 \\
6 & 1 & -8
\end{array}\right] \text { and } \mathrm{b}=\left[\begin{array}{r}
7 \\
-1 \\
-4
\end{array}\right]
$$

- Does the homogeneous system have a nontrivial solution?

PARAMETRIC VECTOR FORM

- The equation $\mathrm{X}=t \mathrm{~V}$ (with t in \mathbf{R}, v in \mathbf{R}^{m}), is a parametric vector equation of a line.
- The equation of the form $\mathrm{X}=s \mathrm{u}+t \mathrm{v}\left(s, t\right.$ in $\mathbf{R}, \mathrm{u}, \mathrm{v}$ in $\left.\mathbf{R}^{\mathrm{m}}\right)$ is called a parametric vector equation of a plane.
- Whenever a solution set is described explicitly with vectors, we say that the solution is in parametric vector form.

SOLUTIONS OF NONHOMOGENEOUS SYSTEMS

- Theorem 6: Suppose the equation $A \mathrm{x}=\mathrm{b}$ is consistent for some given \mathbf{b}, and let \mathbf{p} be a solution. Then the solution set of $A \mathrm{x}=\mathrm{b}$ is the set of all vectors of the form

$$
\mathrm{w}=\mathrm{p}+\mathrm{v}_{h}
$$

where \mathbf{v}_{h} is any solution of the homogeneous equation $A \mathrm{x}=0$.
Proof:

SOLUTIONS OF NONHOMOGENEOUS SYSTEMS

- Note: This theorem says that if $A x=b$ has a solution, then the solution set is obtained by translating the solution set of $A x=0$, using any particular solution \mathbf{p} of $A \mathrm{x}=\mathrm{b}$ for the translation.

WRITING A SOLUTION SET IN PARAMETRIC VECTOR FORM

1. Row reduce the augmented matrix to reduced echelon form.
2. Express each basic variable in terms of any free variables appearing in an equation.
3. Express each free variable by itself.
4. Decompose the general solution \mathbf{x} into a linear combination of vectors (with numeric entries) using the free variables as parameters.
5. Replace the free variables by simple letters / parameters.
