Math 22 -
Linear Algebra and its applications

- Lecture 3 -

Instructor: Bjoern Muetzel

GENERAL INFORMATION

- Office hours: Tu 1-3 pm, Th, Su 2-4 pm in KH 229
- Tutorial: Tu, Th, Sun 7-9 pm in KH 105
- Homework: Homework 1 due this Wednesday at 4 pm in the boxes outside Kemeny 008. Separate your homework into part A, part B and part C and staple it.
- Attention: This Thursday the \mathbf{x}-hour will be a lecture:

Section 1: 12:15-1:05 pm in Kemeny 007 Section 2: 1:20-2:10 pm in Kemeny 007

REVIEW - ROW REDUCTION ALGORITHM

FORWARD PHASE

- STEP 1: Begin with the leftmost nonzero column. This is a pivot column. The pivot position is at the top.
- STEP 2: Select a nonzero entry in the pivot column as a pivot. If necessary, interchange rows to move this entry into the pivot position.
- STEP 3: Use row replacement operations to create zeros in all positions below the pivot.
- STEP 4: Cover the row containing the pivot position, and cover all rows, if any, above it. Apply steps $1-3$ to the submatrix that remains. Repeat the process until there are no more nonzero rows to modify.

BACKWARDPHASE

- STEP 5: Beginning with the rightmost pivot and working upward and to the left, create zeros above each pivot. If a pivot is not 1 , make it 1 by a scaling operation.

REVIEW - SOLVING A SYSTEM OF LINEAR

 EQUATIONSExample:

ECHELON FORM (EF) AND

 REDUCED ECHELON FORM (REF / RREF)$$
\left[\begin{array}{llll}
1 & * & * & * \\
0 & - & * & * \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \quad\left[\begin{array}{llll}
1 & 0 & * & * \\
0 & 1 & * & * \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

1

Linear Equations in Linear Algebra

1.3

VECTOR EQUATIONS

GEOMETRIC INTERPRETATION

GEOMETRIC INTERPRETATION

VECTORS

- A matrix with only one column is called a column vector, or simply a vector.

$$
\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{n}
\end{array}\right]
$$

- The set of all vectors with n entries is denoted by \mathbf{R}^{n}
- The \mathbf{R} stands for the real numbers that appear as entries in the vector
- Two vectors in \mathbf{R}^{n} are equal if and only if their corresponding entries are equal.

VECTORS

- Given two vectors \mathbf{u} and \mathbf{v} in \mathbf{R}^{n}, their sum is the vector $\mathbf{u}+\mathbf{v}$ obtained by adding corresponding entries of \mathbf{u} and \mathbf{v}.

$$
\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{n}
\end{array}\right]+\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right]=\left[\begin{array}{c}
u_{1}+v_{1} \\
u_{2}+v_{2} \\
\vdots \\
u_{n}+v_{n}
\end{array}\right]
$$

- Given a vector \mathbf{u} and a real number c, the scalar multiple of \mathbf{u} by c is the vector $c \mathbf{u}$ obtained by multiplying each entry in \mathbf{u} by c.

VECTORS

- Examples:

ALGEBRAIC PROPERTIES OF R ${ }^{\mathrm{n}}$

- The vector whose entries are all zero is called the zero vector and is denoted by $\mathbf{0}$.
- As all algebraic operations are performed componentwise, we have:
- For all $\mathbf{u}, \mathbf{v}, \mathbf{w}$ in \mathbf{R}^{n} and all scalars c and d in \mathbf{R} :
(i) $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$
(ii) $\mathbf{u}+\mathbf{0}=\mathbf{0}+\mathbf{u}=\mathbf{u}$
(iii) $\mathbf{u}+(-\mathbf{u})=\mathbf{0}$, where $-\mathbf{u}=(-1) \cdot \mathbf{u}$
(iv) $c(\mathbf{u}+\mathbf{v})=c \mathbf{u}+c \mathbf{v}$
(v) $\quad(c+d) \mathbf{u}=c \mathbf{u}+d \mathbf{u}$
(vi) $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$
(vii) $\quad l \cdot \mathbf{u}=\mathbf{u}$

LINEAR COMBINATIONS

- Definition: Given vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}$ in \mathbf{R}^{n} and given scalars $c_{1}, c_{2}, \ldots, c_{p}$, the vector \mathbf{y} defined by

$$
\mathrm{y}=c_{1} \mathrm{v}_{1}+\ldots+c_{p} \mathrm{v}_{p}
$$

is called a linear combination of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ with weights c_{1}, \ldots, c_{p}.

- Note: The weights in a linear combination can be any real numbers, including zero.
- Example:

LINEAR COMBINATIONS

- A vector equation, where the $\left(\mathbf{a}_{\mathbf{i}}\right)$ are vectors, of the form

$$
x_{1} \mathrm{a}_{1}+x_{2} \mathrm{a}_{2}+\ldots+x_{n} \mathrm{a}_{n}=\mathrm{b}
$$

has the same solution set as the linear system whose augmented matrix is

$$
\left[\begin{array}{lllll}
\mathrm{a}_{1} & \mathrm{a}_{2} & \cdots & \mathrm{a}_{n} & \mathrm{~b}
\end{array}\right]
$$

- In particular, \mathbf{b} can be generated by a linear combination of $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$ if and only if there exists a solution to the linear system corresponding to the matrix (5).

LINEAR COMBINATIONS

- Example : Let $\mathrm{a}_{1}=\left[\begin{array}{r}1 \\ -2 \\ -5\end{array}\right], \mathrm{a}_{2}=\left[\begin{array}{l}2 \\ 5 \\ 6\end{array}\right]$ and $\mathrm{b}=\left[\begin{array}{r}7 \\ 4 \\ -3\end{array}\right]$.

Determine whether \mathbf{b} can be generated (or written) as a linear combination of \mathbf{a}_{1} and \mathbf{a}_{2}. If so, what are the weights?

LINEAR COMBINATIONS

LINEAR COMBINATIONS

- Definition: If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ are in \mathbf{R}^{n}, then the set of all linear combinations of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ is denoted by

$$
\operatorname{Span}\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{p}\right\}
$$

and is called the subset of \mathbf{R}^{n} spanned (or generated) by $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$.

That is, $\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is the collection of all vectors that can be written in the form

$$
c_{1} \mathrm{v}_{1}+c_{2} \mathrm{v}_{2}+\ldots+c_{p} \mathrm{v}_{p}
$$

with c_{1}, \ldots, c_{p} scalars.

GEOMETRIC INTERPRETATION

- Let \mathbf{v} be a nonzero vector in \mathbf{R}^{n}. Then $\operatorname{Span}\{\mathbf{v}\}$ is the set of all scalar multiples of \mathbf{v}, which is the set of points on the line in \mathbf{R}^{n} through \mathbf{v} and $\mathbf{0}$.
- Example: v in \mathbf{R}^{3}

GEOMETRIC INTERPRETATION

- If \mathbf{u} and \mathbf{v} are nonzero vectors in \mathbf{R}^{n}, with \mathbf{v} not a multiple of \mathbf{u}, then $\operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$ is the plane in $\mathbf{R}^{\mathbf{n}}$ that contains \mathbf{u}, \mathbf{v}, and $\mathbf{0}$.
- In particular, Span $\{\mathbf{u}, \mathbf{v}\}$ contains the line in \mathbf{R}^{n} through \mathbf{u} and $\mathbf{0}$ and the line through \mathbf{v} and $\mathbf{0}$.
- Example: \mathbf{u}, v in \mathbf{R}^{3}

