Math 22 -
Linear Algebra and its applications

- Lecture 27 -

Instructor: Bjoern Muetzel

GENERAL INFORMATION

- Office hours: Tu 1-3 pm, Th, Sun 2-4 pm in KH 229

Tutorial: Tu, Th, Sun 7-9 pm in KH 105

- Homework 8: due Wednesday at 4 pm outside KH 008. Please give in part \mathbf{B}, \mathbf{C} and \mathbf{D}. There is no part \mathbf{A}.

5

Eigenvalues and Eigenvectors

5.3

DIAGONALIZATION

Summary:

Given a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, then there is always a good basis on which the transformation has a very simple form. In the best case there is a basis of eigenvectors and the matrix is diagonal with respect to this basis.

GEOMETRIC INTERPRETATION

Example: Consider the two bases for \mathbb{R}^{2}

$$
B=\left\{\mathrm{b}_{1}, \mathrm{~b}_{2}\right\}=\left\{\left[\begin{array}{c}
2 \\
-1
\end{array}\right],\left[\begin{array}{c}
-1 \\
2
\end{array}\right]\right\} \text { and } C=\left\{\mathrm{c}_{1}, \mathrm{c}_{2}\right\}=\left\{\left[\begin{array}{c}
0.3 \\
-0.3
\end{array}\right],\left[\begin{array}{c}
0.8 \\
0.2
\end{array}\right]\right\}
$$

(a)

(b)

Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, x \mapsto T(x)=A x$, where $A=\left[\begin{array}{ll}2 & 1 \\ 0 & 2\end{array}\right]$.
Question: What is the matrix of T with respect to the bases B and C ?

LINEAR TRANSFORMATION WITH RESPECT TO DIFFERENT BASES

Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation with standard matrix A . Let E_{n} in \mathbb{R}^{n} and E_{m} in \mathbb{R}^{m} be the standard bases.
Given different bases $\mathbf{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{\boldsymbol{n}}\right\}$ of \mathbb{R}^{n} and $\mathbf{C}=\left\{\mathbf{c}_{\boldsymbol{1}}, \ldots, \mathbf{c}_{\boldsymbol{m}}\right\}$ of \mathbb{R}^{m}.

What is the matrix of the linear transformation T with respect to the bases B and C ?
\mathbb{R}^{n}

\mathbb{R}^{m}

More precisely: What is the matrix A_{C}^{B}, such that

$$
A_{C}^{B}[u]_{B}=[T(u)]_{C} \text { for all } u \text { in } \mathbb{R}^{n}
$$

Theorem: Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation with standard matrix A. Given bases $\mathbf{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ of \mathbb{R}^{n} and $\mathbf{C}=\left\{\mathbf{c}_{1}, \ldots, \mathbf{c}_{m}\right\}$ of \mathbb{R}^{m}. $\operatorname{Let} A_{C}^{B}$ be the matrix of T with respect to B and C, i.e.

$$
A_{C}^{B}[u]_{B}=[T(u)]_{C} \quad \text { for all } u \text { in } \mathbb{R}^{n} .
$$

Then

$$
A_{C}^{B}=P_{C}^{-1} \mathrm{~A} P_{B} \text {. }
$$

Proof: Idea: Read the diagram above.

SIMILARITY = SAME TRANSFORMATION WITH DIFFERENT BASIS

Note: Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear transformation with standard matrix A. Then A and K are similar matrices, if and only if K is the matrix of T with respect to another basis B.

Proof:

Example: Let $\left.A=\left[\begin{array}{cc}7 & 2 \\ -4 & 1\end{array}\right], B=\left\{\left[\begin{array}{c}1 \\ -1\end{array}\right], \begin{array}{c}1 \\ -2\end{array}\right]\right\}$.
Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation with standard matrix A. 1.) Show that the matrix $A_{B}^{B}=P_{B}^{-1} \mathrm{~A} P_{B}$ of T with respect to B (and B) is a diagonal matrix D . This means that A and D are similar.
2.) Use 1.) to find the determinant of A.
3.) Calculate A^{5} in a simple way using 1.)

DIAGONALIZATION

Definition: A square matrix A is said to be diagonalizable if A is similar to a diagonal matrix, that is, if

$$
A=P D P^{-1}
$$

for some invertible matrix $\boldsymbol{P}=\boldsymbol{P}_{\boldsymbol{B}}=\left[\mathrm{b}_{1}, \ldots, \mathrm{~b}_{n}\right]$ and some diagonal matrix \boldsymbol{D}.

Theorem 5: An $n \times n$ matrix A is diagonalizable if and only if A has n linearly independent eigenvectors that form a basis of \mathbb{R}^{n}. We call such a basis $B=\left\{b_{1}, \ldots, b_{n}\right\}$ an eigenvector basis of \mathbb{R}^{n}.

Note 1: Theorem 5 says that if there is an eigenvector basis B of A, then the corresponding transformation

$$
T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, x \mapsto T(x)=A x
$$

has a very simple form with respect to the basis B.

DIAGONALIZATION

General procedure for a diagonalization of an $\boldsymbol{n} \times \boldsymbol{n}$ matrix \boldsymbol{A} :

1.) Find the eigenvalues of A by solving the equation

$$
\operatorname{det}\left(A-\lambda I_{n}\right)=0 \quad \text { for } \lambda .
$$

2.) For each eigenvalue λ_{i} find a basis of eigenvectors $\mathbf{B}\left(\boldsymbol{\lambda}_{\boldsymbol{i}}\right)$ for

$$
\operatorname{Eig}\left(\mathrm{A}, \lambda_{i}\right)=\operatorname{Nul}\left(A-\lambda_{i} I_{n}\right)
$$

3.) If the combined bases $\left(\mathrm{B}\left(\lambda_{i}\right)\right)_{i}$ form a basis B of \mathbb{R}^{n}, then

$$
P_{B}=\left[\mathrm{B}\left(\lambda_{1}\right), \mathrm{B}\left(\lambda_{2}\right), \ldots\right] \text { and } A=P_{B} D P_{B}^{-1} \text {. }
$$

Note: Theorem 7 will give us conditions to see when a diagonalization
is not possible. These conditions allow us to stop after Step 1.) or 2.)

Example: Diagonalize the following matrix, if possible.

$$
A=\left[\begin{array}{rrr}
1 & 3 & 3 \\
-3 & -5 & -3 \\
3 & 3 & 1
\end{array}\right]
$$

Note: $\begin{aligned} \operatorname{det}\left(A-\lambda I_{n}\right) & =-(\lambda-1)(\lambda+2)^{2} \text { and } \\ \operatorname{Nul}\left(A-1 I_{n}\right) & =\operatorname{Span}\left\{\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]\right\}\end{aligned}$

DIAGONALIZATION

THEOREMS ABOUT DIAGONALIZATION

Theorem 6: An $n \times n$ matrix with n distinct eigenvalues is diagonalizable.

- Proof: Let $\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}$ be eigenvectors corresponding to the n distinct eigenvalues of a matrix A. Then $\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ is linearly independent, by Theorem 2 in Sect. 5.1. Hence A is diagonalizable, by Theorem 5.

Note: 1.) It is not necessary for an $n \times n$ matrix to have n distinct eigenvalues in order to be diagonalizable (see the previous Example)
2.) When A is diagonalizable but has fewer than n distinct eigenvalues, it might still be possible to find a basis of eigenvectors $\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}$, to build $P_{B}=\left[\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right]$.

THEOREMS ABOUT DIAGONALIZATION

Theorem 7: Let A be an $n \times n$ matrix with distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{p}$, where $\mathrm{p} \leq n$. Let $m\left(\lambda_{k}\right)$ be the multiplicity of the eigenvalue λ_{k}.
a. For $1 \leq k \leq p$ we have: $\operatorname{dim}\left(\operatorname{Eig}\left(\mathrm{A}, \lambda_{k}\right)\right) \leq m\left(\lambda_{k}\right)$.
b. The matrix A is diagonalizable if and only if

$$
\operatorname{dim}\left(\operatorname{Eig}\left(\mathrm{A}, \lambda_{1}\right)\right)+\ldots+\operatorname{dim}\left(\operatorname{Eig}\left(\mathrm{A}, \lambda_{p}\right)\right)=n
$$

This happens if and only if
(i) the char. polynomial factors completely into linear factors
(ii) For $1 \leq k \leq p$ we have $\operatorname{dim}\left(\operatorname{Eig}\left(\mathbf{A}, \boldsymbol{\lambda}_{\boldsymbol{k}}\right)\right)=\boldsymbol{m}\left(\boldsymbol{\lambda}_{\boldsymbol{k}}\right)$
c. If A is diagonalizable and B_{k} is a basis for $\operatorname{Eig}\left(\mathrm{A}, \lambda_{k}\right)$, then $\mathrm{B}=\left\{\mathrm{B}_{1}, \ldots, \mathrm{~B}_{p}\right\}$ forms an eigenvector basis for \mathbb{R}^{n}.

Example 1: We have seen that the matrix

$$
A=\left[\begin{array}{rrr}
1 & 3 & 3 \\
-3 & -5 & -3 \\
3 & 3 & 1
\end{array}\right] \quad \text { is diagonalizable. }
$$

Example 2: The matrix

$$
B=\left[\begin{array}{ccc}
2 & 4 & 3 \\
-4 & -6 & -3 \\
3 & 3 & 1
\end{array}\right] \quad \text { is not diagonalizable. }
$$

Note: $\begin{aligned} \operatorname{det}\left(B-\lambda I_{n}\right) & =-(\lambda-1)(\lambda+2)^{2} \text { and } \\ \operatorname{Nul}\left(B-1 I_{n}\right) & =\operatorname{Span}\left\{\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]\right\}\end{aligned}$

THEOREMS ABOUT DIAGONALIZATION

