Math 22 – Linear Algebra and its applications

- Lecture 27 -

Instructor: Bjoern Muetzel

GENERAL INFORMATION

• Office hours: Tu 1-3 pm, Th, Sun 2-4 pm in KH 229

Tutorial: Tu, Th, Sun 7-9 pm in KH 105

• <u>Homework 8</u>: due Wednesday at 4 pm outside KH 008. Please give in part B, C and D. There is no part A.

5 Eigenvalues and Eigenvectors

5.3

DIAGONALIZATION

LINEAR ALGEBRA AND ITS APPLICATIONS

FIFTH EDITION

David C. Lay • Steven R. Lay • Judi J. McDonald

Summary:

Given a linear transformation $T: \mathbb{R}^n \to \mathbb{R}^n$, then there is **always** a good basis on which the transformation has a very simple form. In the best case there is a **basis of eigenvectors** and the matrix is **diagonal** with respect to this basis.

GEOMETRIC INTERPRETATION

Let $T: \mathbb{R}^2 \to \mathbb{R}^2$, $x \mapsto T(x) = Ax$, where $A = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}$. Question: What is the matrix of *T* with respect to the bases B and C?

LINEAR TRANSFORMATION WITH RESPECT TO DIFFERENT BASES

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation with standard matrix A. Let E_n in \mathbb{R}^n and E_m in \mathbb{R}^m be the **standard bases**.

Given **different** bases $\mathbf{B} = \{\mathbf{b}_1, ..., \mathbf{b}_n\}$ of \mathbb{R}^n and $\mathbf{C} = \{\mathbf{c}_1, ..., \mathbf{c}_m\}$ of \mathbb{R}^m .

What is the matrix of the linear transformation *T* with respect to the bases B and C ?

More precisely: What is the matrix A_C^B , such that

$$A_C^B[u]_B = [T(u)]_C$$
 for all u in \mathbb{R}^n

Theorem: Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation with standard matrix A. Given bases $\mathbf{B} = \{\mathbf{b}_1, ..., \mathbf{b}_n\}$ of \mathbb{R}^n and $\mathbf{C} = \{\mathbf{c}_1, ..., \mathbf{c}_m\}$ of \mathbb{R}^m . Let A_C^B be the matrix of T with respect to B and C, i.e.

$$A_C^B[u]_B = [T(u)]_C$$
 for all u in \mathbb{R}^n .

Then

$$A_C^B = P_C^{-1} A P_B$$

Proof: Idea: Read the diagram above.

SIMILARITY = SAME TRANSFORMATION WITH DIFFERENT BASIS

Note: Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation with standard matrix *A*. Then *A* and *K* are similar matrices, if and only if *K* is the matrix of *T* with respect to another basis B.

Proof:

Example: Let $A = \begin{bmatrix} 7 & 2 \\ -4 & 1 \end{bmatrix}$, $B = \{ \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ -2 \end{bmatrix} \}$. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation with standard matrix *A*. 1.) Show that the matrix $A_B^B = P_B^{-1}AP_B$ of *T* with respect to B (and B) is a diagonal matrix D. This means that A and D are similar. 2.) Use 1.) to find the determinant of *A*. 3.) Calculate A^5 in a simple way using 1.)

DIAGONALIZATION

Definition: A square matrix *A* is said to be **diagonalizable** if *A* is similar to a diagonal matrix, that is, if

$$A = PDP^{-1}$$

for some invertible matrix $P = P_B = [b_1, ..., b_n]$ and some diagonal matrix D.

Theorem 5: An $n \times n$ matrix *A* is **diagonalizable** if and only if *A* has *n* linearly independent eigenvectors that form a basis of \mathbb{R}^n . We call such a basis $B = \{b_1, ..., b_n\}$ an **eigenvector basis** of \mathbb{R}^n .

Note 1: Theorem 5 says that if there is an eigenvector basis B of A, then the corresponding transformation

 $T: \mathbb{R}^n \to \mathbb{R}^n, x \mapsto T(x) = Ax$

has a very **simple form** with respect to the basis B.

General procedure for a diagonalization of an $n \times n$ matrix A:

1.) Find the **eigenvalues** of *A* by solving the equation $det(A - \lambda I_n) = 0$ for λ .

2.) For each eigenvalue λ_i find a basis of eigenvectors $\mathbf{B}(\lambda_i)$ for $\operatorname{Eig}(\mathbf{A},\lambda_i) = \operatorname{Nul}(A - \lambda_i I_n)$

3.) If the combined bases $(B(\lambda_i))_i$ form a basis B of \mathbb{R}^n , then $P_B = [B(\lambda_1), B(\lambda_2), ...]$ and $A = P_B D P_B^{-1}$.

Note: Theorem 7 will give us conditions to see when a diagonalization is not possible. These conditions allow us to stop after Step 1.) or 2.)

Example: Diagonalize the following matrix, if possible.

$$A = \begin{bmatrix} 1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1 \end{bmatrix}$$

Note: det
$$(A - \lambda I_n) = -(\lambda - 1)(\lambda + 2)^2$$
 and
Nul $(A - 1I_n) =$ Span $\{\begin{bmatrix} 1\\ -1\\ 1 \end{bmatrix}\}$

DIAGONALIZATION

THEOREMS ABOUT DIAGONALIZATION

Theorem 6: An $n \times n$ matrix with *n* distinct eigenvalues is diagonalizable.

- Proof: Let b₁, ..., b_n be eigenvectors corresponding to the n distinct eigenvalues of a matrix A. Then {b₁, ..., b_n} is linearly independent, by Theorem 2 in Sect. 5.1. Hence A is diagonalizable, by Theorem 5.
- Note: 1.) It is not necessary for an $n \times n$ matrix to have n distinct eigenvalues in order to be diagonalizable (see the previous **Example**)
- 2.) When A is diagonalizable but has fewer than n distinct eigenvalues, it might still be possible to find a basis of eigenvectors $\mathbf{b}_1, \dots, \mathbf{b}_n$, to build $P_B = [\mathbf{b}_1, \dots, \mathbf{b}_n]$.

THEOREMS ABOUT DIAGONALIZATION

Theorem 7: Let *A* be an $n \times n$ matrix with distinct eigenvalues $\lambda_1, \ldots, \lambda_p$, where $p \leq n$. Let $m(\lambda_k)$ be the multiplicity of the eigenvalue λ_k . a. For $1 \leq k \leq p$ we have: $\dim(\operatorname{Eig}(A, \lambda_k)) \leq m(\lambda_k)$.

b. The matrix A is diagonalizable if and only if

 $\dim(\operatorname{Eig}(A,\lambda_1)) + \ldots + \dim(\operatorname{Eig}(A,\lambda_p)) = n$

This happens if and only if

(*i*) the char. polynomial factors completely into linear factors (*ii*) For $1 \le k \le p$ we have $\left[\dim(\operatorname{Eig}(A, \lambda_k)) = m(\lambda_k) \right]$.

c. If A is diagonalizable and B_k is a basis for Eig(A, λ_k), then B={B₁, ..., B_p} forms an eigenvector basis for \mathbb{R}^n . **Example 1:** We have seen that the matrix

$$A = \begin{bmatrix} 1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1 \end{bmatrix}$$

is diagonalizable.

Example 2: The matrix

$$B = \begin{bmatrix} 2 & 4 & 3 \\ -4 & -6 & -3 \\ 3 & 3 & 1 \end{bmatrix}$$
 is not diagonalizable.

Note: det
$$(B - \lambda I_n) = -(\lambda - 1)(\lambda + 2)^2$$
 and
Nul $(B - 1I_n) =$ Span $\{ \begin{bmatrix} 1\\ -1\\ 1 \end{bmatrix} \}$

THEOREMS ABOUT DIAGONALIZATION