Math 22 -
Linear Algebra and its applications

- Lecture 26 -

Instructor: Bjoern Muetzel

GENERAL INFORMATION

- Office hours: Tu 1-3 pm, Th, Sun 2-4 pm in KH 229

Tutorial: Tu, Th, Sun 7-9 pm in KH 105

- Homework 8: due Wednesday at 4 pm outside KH 008. Please give in part \mathbf{B}, \mathbf{C} and \mathbf{D}. There is no part \mathbf{A}.

5

Eigenvalues and Eigenvectors

5.2

THE CHARACTERISTIC EQUATION

Summary:

We can use determinants to find the eigenvalues of a matrix A. Finding the eigenvalues of a matrix amounts to finding the roots of the characteristic polynomial.

REVIEW: DETERMINANTS

Theorem 3: (Properties of Determinants)

If A and B are $n \times n$ matrices, then
a. A is invertible if and only if $\operatorname{det}(A) \neq 0$.
b. $\operatorname{det}(A B)=$
c. $\quad \operatorname{det} A^{T}=$
d. $\operatorname{det}\left(A^{-1}\right)=$

Proof of Theorem 3d:

REVIEW: DETERMINANTS

- Defintion: Given $A=\left[\mathrm{a}_{\mathrm{ij}}\right]$, the $(\boldsymbol{i}, \boldsymbol{j})$-cofactor of A is the number C_{ij} given by

$$
C_{i j}=(-1)^{i+j} \operatorname{det} A_{i j} .
$$

The sign of the cofactor can be read from the sign matrix:

$$
\left[\begin{array}{cccc}
+ & - & + & \cdots \\
- & + & - & \\
+ & - & + & \\
\vdots & & & \ddots
\end{array}\right] \quad \boldsymbol{A}_{\mathbf{2 1}}=\left[\begin{array}{cccc}
& a_{1,2} & \cdots & a_{1, n} \\
\square & & & \\
& & \vdots & \ddots
\end{array}\right]
$$

Example:

$$
C_{21}=(-1)^{2+1} \operatorname{det} A_{21}
$$

REVIEW: DETERMINANTS

Theorem: (Cofactor expansion)

The determinant of an $n \times n$ matrix A can be computed by a cofactor across any row or down any column.
The expansion across the i-th row using cofactors is

$$
\operatorname{det} A=a_{i 1} C_{i 1}+a_{i 2} C_{i 2}+\cdots+a_{i n} C_{i n}
$$

The expansion down the \boldsymbol{j}-th column is

$$
\operatorname{det} A=a_{1 j} C_{1 j}+a_{2 j} C_{2 j}+\cdots+a_{n j} C_{n j}
$$

Example: Use a cofactor expansion down the third column to compute $\operatorname{det} A$, where

$$
A=\left[\begin{array}{cccr}
1 & 5 & 0 & 0 \\
2 & 4 & 2 & 6 \\
4 & -2 & 0 & -3 \\
0 & 7 & 0 & -2
\end{array}\right]
$$

THE CHARACTERISTIC EQUATION

How can we find the eigenvalues of a matrix \boldsymbol{A} ?

- Let A be an $n \times n$ matrix. We know that the eigenvectors for a certain eigenvalue λ lie in the null space
$\operatorname{Nul}\left(\boldsymbol{A}-\lambda \boldsymbol{I}_{\boldsymbol{n}}\right)=\left\{\mathrm{x}\right.$ in \mathbb{R}^{n}, such that $\left.\left(A-\lambda I_{n}\right) \mathrm{x}=0\right\}=\boldsymbol{\operatorname { E i g }}(\boldsymbol{A}, \boldsymbol{\lambda})$
- This means that $A-\lambda I_{n}$ is not invertible or

$$
\operatorname{det}\left(A-\lambda I_{n}\right)=0
$$

- Hence we can find the eigenvalues of \boldsymbol{A} by solving the equation $\operatorname{det}\left(A-\lambda I_{n}\right)=0$ for λ.

THE CHARACTERISTIC EQUATION

- Example: Find the characteristic equation of A and determine the eigenvalues of A. Then find the eigenspaces associated to these eigenvalues.

$$
A=\left[\begin{array}{ccc}
5 & -8 & 0 \\
0 & 5 & 4 \\
0 & -1 & 1
\end{array}\right]
$$

THE CHARACTERISTIC EQUATION

Theorem: Let A be $n \times n$ matrix. The equation

$$
\operatorname{det}\left(A-\lambda I_{n}\right)=0
$$

is called the characteristic equation of \boldsymbol{A}.
Furthermore λ in \mathbb{R} is an eigenvalue of \boldsymbol{A} if and only if λ satisfies the characteristic equation.

Definition: If A is an $n \times n$ matrix, then
1.) $\operatorname{det}\left(A-\lambda I_{n}\right)$ is a polynomial of degree n called the characteristic polynomial of A.
2.) The (algebraic) multiplicity of an eigenvalue λ is its multiplicity as a root of the characteristic equation.
Example:

SIMILARITY

- Definition: If A and B are $n \times n$ matrices, then A is similar to B if there is an invertible matrix P such that

$$
A=P B P^{-1} \text { or, equivalently } \quad P^{-1} A P=B \text {. }
$$

- Setting $\mathrm{Q}=P^{-1}$, we have $B=Q^{-1} A Q$.

So B is also similar to A, and we say simply that A and B are similar.

- Changing A into $P A P^{-1}$ is called a similarity transformation.
- Theorem 4: If $n \times n$ matrices A and B are similar, then they have the same characteristic polynomial and hence the same eigenvalues with the same multiplicities.
- Proof:

Warning:

1.) The matrices $\left[\begin{array}{ll}1 & 1 \\ 0 & 2\end{array}\right]$ and $\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$ are not similar even though they have the same eigenvalues.
2.) Similarity is not the same as row equivalence. Row operations on a matrix usually change its eigenvalues.

Example: For $A=\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 3\end{array}\right]\left[\begin{array}{lll}1 & 6 & 5 \\ 0 & 2 & 4 \\ 0 & 0 & 3\end{array}\right]\left[\begin{array}{ccc}1 & -1 / 2 & 1 / 6 \\ 0 & 1 / 2 & -1 / 6 \\ 0 & 0 & 1 / 3\end{array}\right]=P B Q$
1.) Use Theorem $\mathbf{3}$ to calculate $\operatorname{det} A$.
2.) Is $Q=P^{-1} \quad$?
3.) Find the eigenvalues of A using Theorem 4
4.) Can you find an eigenvector of A without solving the equation for the eigenspace ? Hint: Look at $B Q$

