Math 22 -
Linear Algebra and its applications

- Lecture 25 -

Instructor: Bjoern Muetzel

GENERAL INFORMATION

- Office hours: Tu 1-3 pm, Th, Sun 2-4 pm in KH 229

Tutorial: Tu, Th, Sun 7-9 pm in KH 105

- Homework 8: due Wednesday at 4 pm outside KH 008. There is only Section B,C and D.

5

Eigenvalues and Eigenvectors

5.1

EIGENVECTORS AND EIGENVALUES

Summary:

Given a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, then there is always a good basis on which the transformation has a very simple form. To find this basis we have to find the eigenvalues of \boldsymbol{T}.

GEOMETRIC INTERPRETATION

Example: Let $A=\left[\begin{array}{cc}5 & -3 \\ -6 & 2\end{array}\right]$ and let $u=x_{0}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and $v=\left[\begin{array}{c}1 \\ -1\end{array}\right]$.
1.) Find $A v$ and $A u$.

Draw a picture of v and $A v$ and u and $\mathrm{A} u$.
2.) Find $A(3 u+2 v)$ and $A^{2}(3 u+2 v)$. Hint: Use part 1.)

EIGENVECTORSAND EIGENVALUES

Definition: An eigenvector of an $n \times n$ matrix A is a nonzero vector \mathbf{x} such that

$$
A x=\lambda x \quad \text { for some scalar } \lambda \text { in } \mathbb{R}
$$

In this case λ is called an eigenvalue and the solution $\mathbf{x} \neq \mathbf{0}$ is called an eigenvector corresponding to λ.

Definition: Let A be an $n \times n$ matrix. The set of solutions

$$
\operatorname{Eig}(A, \lambda)=\left\{\mathrm{x} \text { in } \mathbb{R}^{n}, \text { such that }\left(A-\lambda I_{n}\right) \mathrm{x}=0\right\}
$$

is called the eigenspace $\operatorname{Eig}(\boldsymbol{A}, \boldsymbol{\lambda})$ of A corresponding to λ.
It is the null space of the matrix $A-\lambda I_{n}$:

$$
\operatorname{Eig}(A, \lambda)=\operatorname{Nul}\left(A-\lambda I_{n}\right)
$$

EIGENVECTORSAND EIGENVALUES

Example: Show that $\lambda=7$ is an eigenvalue of matrix $A=\left[\begin{array}{ll}1 & 6 \\ 5 & 2\end{array}\right]$ and find the corresponding eigenspace $\operatorname{Eig}(A, 7)$.

EIGENVECTORSAND EIGENVALUES

- Example: Let $A=\left[\begin{array}{rrr}4 & -1 & 6 \\ 2 & 1 & 6 \\ 2 & -1 & 8\end{array}\right]$. An eigenvalue of A is $\lambda=2$.

Find a basis for the corresponding eigenspace $\operatorname{Eig}(A, 2)$.

EIGENVECTORSAND EIGENVALUES

- The eigenspace $\operatorname{Eig}(A, 2)=\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{c}-3 \\ 0 \\ 1\end{array}\right]\right\}$ is a subspace of \mathbb{R}^{3}.

A acts as a dilation on the eigenspace.

THEOREMS ABOUT EIGENVALUES

- Theorem 1: The eigenvalues of a triangular matrix are the entries on its main diagonal.
- Warning: We can not find the eigenvalues of a matrix A by row reducing to echelon form U. As \boldsymbol{A} and \boldsymbol{U} have usually different eigenvalues.
- Proof of Theorem 1:

THEOREMS ABOUT EIGENVALUES

THEOREMS ABOUT EIGENVALUES

- Theorem 2: If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}$ are eigenvectors that correspond to distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{r}$ of an $n \times n$ matrix A, then the set $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}\right\}$ is linearly independent.
- Proof: Suppose $\mathrm{S}=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}\right\}$ is linearly dependent.
- Then there is a subset of $S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}\right\}$, say $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ that is a basis for $\operatorname{Span}(S)$ and a vector, say \mathbf{v}_{p+1} that is a linear combination of these vectors.
- Then there exist scalars c_{1}, \ldots, c_{p} such that

$$
\begin{equation*}
c_{1} v_{1}+\cdots+c_{p} v_{p}=v_{p+1} \tag{1}
\end{equation*}
$$

- Multiplying both sides of (1) by A and using the fact that $A v_{k}=\lambda_{k} v_{k}$ for each k, we obtain by the linearity of A
- Multiplying both sides of (1) by λ_{p+1} and substituting the result in the right hand side of (2), we obtain

> or

$$
\begin{equation*}
=0 . \tag{3}
\end{equation*}
$$

- Since $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is linearly independent, the weights in (3) are all zero. But none of the factors $\lambda_{i}-\lambda_{p+1}$ are zero, because the eigenvalues are distinct. Hence $c_{i}=0$ for $i=1, \ldots, p$.
- But then (1) states that $v_{p+1}=0$, which is impossible.

EIGENVECTORS AND DIFFERENCE EQUATIONS

Application to a recursive sequence in \mathbb{R}^{n}

Let A be an $n \times n$ matrix and consider the recursive sequence $\left\{x_{k}\right\}$ in \mathbb{R}^{n} given by $x_{0}=u$ in \mathbb{R}^{n} and

$$
x_{k+1}=A x_{k} \quad \text { for } k=0,1,2,3, \ldots
$$

Definition: We call a solution of this equation an explicit description of $\left\{x_{k}\right\}$ whose formula for each x_{k} does not depend directly on \boldsymbol{A} or on the preceding terms in the sequence other than the initial term $\boldsymbol{x}_{\mathbf{0}}=\boldsymbol{u}$.

Note: It follows that

$$
x_{k+1}=A^{k} x_{0}=A^{k} u
$$

However, this is not explicit enough to be a solution.

Proof of the Note:

EIGENVECTORS AND DIFFERENCE EQUATIONS

- Example: Let A be an $n \times n$ matrix such that

$$
\mathrm{A} b_{1}=2 b_{1} \quad \text { and } \quad \mathrm{A} b_{2}=\frac{1}{3} b_{2} \quad \text { where } \quad b_{1}, b_{2} \neq 0
$$

1.) Calculate $A^{2} b_{1}$ and $A^{2} b_{2}$.
2.) Calculate $A^{k} b_{1}$ and $A^{k} b_{2}$ and describe geometrically what happens to $A^{k} b_{1}$ and $A^{k} b_{2}$.
3.) Find a formula for $A^{k}\left(4 b_{1}+5 b_{2}\right)$.

