Math 22 – Linear Algebra and its applications

- Lecture 25 -

Instructor: Bjoern Muetzel

GENERAL INFORMATION

• **Office hours:** Tu 1-3 pm, **Th**, Sun **2-4 pm** in **KH 229**

Tutorial: Tu, Th, Sun 7-9 pm in KH 105

• <u>Homework 8</u>: due Wednesday at 4 pm outside KH 008. There is only Section B,C and D.

5 Eigenvalues and Eigenvectors

5.1

EIGENVECTORS AND EIGENVALUES

FIFTH EDITION

DAVID C. LAY • STEVEN R. LAY • JUDI J. McDonald

Summary:

Given a linear transformation $T: \mathbb{R}^n \to \mathbb{R}^n$, then there is always a **good basis** on which the **transformation** has a **very simple form**. To find this basis we have to find the **eigenvalues of** *T*.

GEOMETRIC INTERPRETATION

Example: Let $A = \begin{bmatrix} 5 & -3 \\ -6 & 2 \end{bmatrix}$ and let $u = x_0 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $v = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$.

1.) Find Av and Au.

Draw a picture of v and Av and u and Au.

2.) Find A(3u + 2v) and $A^2 (3u + 2v)$. Hint: Use part 1.)

• **Definition:** An **eigenvector** of an $n \times n$ matrix A is a **nonzero** vector **x** such that

$$Ax = \lambda x$$
 for so

for some scalar λ in \mathbb{R} .

In this case λ is called an **eigenvalue** and the solution $\mathbf{x} \neq \mathbf{0}$ is called an **eigenvector corresponding to** λ .

Definition: Let *A* be an $n \times n$ matrix. The set of solutions $\mathbf{Eig}(A, \lambda) = \{x \text{ in } \mathbb{R}^n, \text{ such that } (A - \lambda I_n) x = 0\}$ is called the **eigenspace Eig**(A, λ) of *A* corresponding to λ .

It is the null space of the matrix $A - \lambda I_n$:

$$\operatorname{Eig}(A, \lambda) = \operatorname{Nul}(A - \lambda I_n)$$

Example: Show that $\lambda = 7$ is an eigenvalue of matrix $A = \begin{vmatrix} 1 & 6 \\ 5 & 2 \end{vmatrix}$

and find the corresponding eigenspace Eig(A,7).

• Example: Let $A = \begin{bmatrix} 4 & -1 & 6 \\ 2 & 1 & 6 \\ 2 & -1 & 8 \end{bmatrix}$. An eigenvalue of A is $\lambda = 2$. Find a basis for the corresponding eigenspace Eig(A,2).

• The eigenspace $\operatorname{Eig}(A,2) = \operatorname{Span}\left\{ \begin{bmatrix} 1\\2\\0 \end{bmatrix}, \begin{bmatrix} -3\\0\\1 \end{bmatrix} \right\}$ is a subspace of \mathbb{R}^3 .

A acts as a dilation on the eigenspace.

THEOREMS ABOUT EIGENVALUES

- **Theorem 1:** The eigenvalues of a triangular matrix are the entries on its main diagonal.
- Warning: We can not find the eigenvalues of a matrix A by row reducing to echelon form U. As A and U have usually different eigenvalues.
- Proof of Theorem 1:

THEOREMS ABOUT EIGENVALUES

THEOREMS ABOUT EIGENVALUES

- Theorem 2: If v₁, ..., v_r are eigenvectors that correspond to distinct eigenvalues λ₁, ..., λ_r of an n × n matrix A, then the set {v₁, ..., v_r} is linearly independent.
- **Proof:** Suppose $S = \{v_1, ..., v_r\}$ is linearly dependent.
- Then there is a subset of S={v₁, ..., v_r}, say {v₁, ..., v_p} that is a basis for Span(S) and a vector, say v_{p+1} that is a linear combination of these vectors.
- Then there exist scalars c_1, \ldots, c_p such that

$$c_1 v_1 + \dots + c_p v_p = v_{p+1}$$
 (1)

• Multiplying both sides of (1) by *A* and using the fact that $Av_k = \lambda_k v_k$ for each *k*, we obtain by the linearity of *A*

or (2)

Multiplying both sides of (1) by λ_{p+1} and substituting the result in the right hand side of (2), we obtain

= 0. (3)

- Since {v₁, ..., v_p} is linearly independent, the weights in (3) are all zero. But none of the factors λ_i − λ_{p+1} are zero, because the eigenvalues are distinct. Hence c_i = 0 for i = 1, ..., p.
- But then (1) states that $v_{p+1} = 0$, which is impossible.

EIGENVECTORS AND DIFFERENCE EQUATIONS

Application to a recursive sequence in \mathbb{R}^n

Let A be an $n \times n$ matrix and consider the **recursive sequence** $\{x_k\}$ in \mathbb{R}^n given by $x_0 = u$ in \mathbb{R}^n and $x_{k+1} = Ax_k$ for k = 0, 1, 2, 3, ...,

Definition: We call a **solution** of this equation an <u>explicit description</u> of $\{x_k\}$ whose formula for each x_k does **not depend directly on** A or on the preceding terms in the sequence <u>other than</u> the initial term $x_0 = u$.

Note: It follows that

$$x_{k+1} = A^k x_0 = A^k u,$$

However, this is **not explicit enough** to be a solution.

Proof of the Note:

EIGENVECTORS AND DIFFERENCE EQUATIONS

• **Example:** Let A be an $n \times n$ matrix such that

$$Ab_1 = 2b_1$$
 and $Ab_2 = \frac{1}{3}b_2$ where $b_1, b_2 \neq 0$.

- 1.) Calculate $A^2 b_1$ and $A^2 b_2$.
- 2.) Calculate $A^k b_1$ and $A^k b_2$ and describe geometrically what happens to $A^k b_1$ and $A^k b_2$.
- 3.) Find a formula for $A^k(4b_1+5b_2)$.