Math 22 – Linear Algebra and its applications

- Lecture 24 -

Instructor: Bjoern Muetzel

6 Orthogonality and Least Squares

6.5

LEAST-SQUARES PROBLEMS AND LINEAR MODELS

FIFTH EDITION

David C. Lay • Steven R. Lay • Judi J. McDonald

LEAST-SQUARES PROBLEMS

• **Definition:** If A is $m \times n$ and **b** is in \mathbb{R}^m , a **least-squares solution** of Ax = b is an \hat{x} in \mathbb{R}^n such that

$$\left| \left| |\boldsymbol{b} - A \, \widehat{\boldsymbol{x}} \right| \right| \le \left| |\boldsymbol{b} - A\boldsymbol{x}| \right|$$

for all **x** in \mathbb{R}^n .

• Note: In this problem we assume that Ax = b has no solution. Another way of seeing this, is that we find a the vector $A\hat{x} = \hat{b}$ in Col A that is closest to b.

The vector **b** is closer to $A\hat{\mathbf{x}}$ than to $A\mathbf{x}$ for other **x**.

- Given A and **b**, we apply the **Best Approximation Theorem** to the subspace Col A. So we take $\hat{b} = proj_{ColA}(b)$
- Because \hat{b} is in the column space *A*, the equation $A \mathbf{x} = \hat{b}$ is consistent, and there is an \hat{x} in \mathbb{R}^n such that

$$A \hat{\boldsymbol{x}} = \hat{\boldsymbol{b}}$$
(1)

• Since \hat{b} is the closest point in Col *A* to **b**, a vector \hat{x} is a least-squares solution of $A x = \hat{b}$ if and only if \hat{x} satisfies (1).

How can we find \hat{x} and $\hat{b} = proj_{ColA}(b)$?

Trick: $(\widehat{\boldsymbol{b}} - \mathbf{b})$ in $ColA^{\perp}$

SOLUTION OF THE GENREAL LEAST-SQUARES PROBLEM

The least-squares solution $\hat{\mathbf{x}}$ is in \mathbb{R}^n .

SOLUTION OF THE GENREAL LEAST-SQUARES PROBLEM

• Theorem 13: The set of least-squares solutions of Ax = b coincides with the nonempty set of solutions of the normal equation.

$$A^{T}A\mathbf{x} = A^{T}\mathbf{b}$$

- Example 1: Find a least-squares solution of the inconsistent system for $A = \begin{bmatrix} 4 & 0 \\ 0 & 2 \\ 1 & 1 \end{bmatrix}, b = \begin{bmatrix} 2 \\ 0 \\ 11 \end{bmatrix}$
- Then draw a picture.

APPLICATIONS TO LINEAR MODELS

• Least-Square Lines: We can fit a line to a set of data points.

FIGURE 1 Fitting a line to experimental data.

• **How** to set up the **system of linear equations** can be seen from the following **table**:

Predicted y-value	Observed y-value	
$\beta_0 + \beta_1 x_1$	=	<i>y</i> ₁
$\beta_0 + \beta_1 x_2$	=	<i>y</i> ₂
÷		÷
$\beta_0 + \beta_1 x_n$	=	y_n

We obtain an equation

$$X\boldsymbol{\beta} = \mathbf{y}, \text{ where } X = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix}, \quad \boldsymbol{\beta} = \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix}, \quad \mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

Looking at the table we want to minimize:

APPLICATIONS TO LINEAR MODELS

Hence we have to solve the **Least Square Problem:**

• Example: Find the Least-Square Line that best fits the data points (2,1), (5,2), (7,3) and (8,3). Draw a picture.