Math 22 -
Linear Algebra and its applications

- Lecture 24 -

Instructor: Bjoern Muetzel

6

Orthogonality and Least

 Squares
6.5

LEAST-SQUARES PROBLEMS AND LINEAR MODELS

LEAST-SQUARES PROBLEMS

Definition: If A is $m \times n$ and \mathbf{b} is in \mathbb{R}^{m}, a least-squares solution of $A \boldsymbol{x}=\boldsymbol{b}$ is an $\widehat{\boldsymbol{x}}$ in \mathbb{R}^{n} such that

$$
||\boldsymbol{b}-A \widehat{\boldsymbol{x}}|| \leq||\boldsymbol{b}-A \boldsymbol{x}|| \quad \quad \text { for all } \mathbf{x} \text { in } \mathbb{R}^{n}
$$

Note: In this problem we assume that $A \boldsymbol{x}=\boldsymbol{b}$ has no solution.
Another way of seeing this, is that we find a the vector
$A \widehat{\boldsymbol{x}}=\widehat{\boldsymbol{b}}$ in $\operatorname{Col} A$ that is closest to \mathbf{b}.

The vector \mathbf{b} is closer to $A \hat{\mathbf{x}}$ than to $A \mathbf{x}$ for other \mathbf{x}.

- Given A and b, we apply the Best Approximation Theorem to the subspace $\operatorname{Col} A$. So we take $\widehat{\boldsymbol{b}}=\operatorname{proj}_{\text {ColA }}(\boldsymbol{b})$
- Because $\widehat{\boldsymbol{b}}$ is in the column space A, the equation $A \boldsymbol{x}=\widehat{\boldsymbol{b}}$ is consistent, and there is an $\widehat{\boldsymbol{x}}$ in \mathbb{R}^{n} such that

$$
\begin{equation*}
A \widehat{\boldsymbol{x}}=\widehat{\boldsymbol{b}} \tag{1}
\end{equation*}
$$

- Since $\widehat{\boldsymbol{b}}$ is the closest point in $\operatorname{Col} A$ to \mathbf{b}, a vector $\widehat{\boldsymbol{x}}$ is a leastsquares solution of $A \boldsymbol{x}=\widehat{\boldsymbol{b}}$ if and only if $\widehat{\boldsymbol{x}}$ satisfies (1).

$$
\text { How can we find } \widehat{x} \text { and } \widehat{b}=\operatorname{proj}_{\text {ColA }}(b) ?
$$

Trick: $(\widehat{\boldsymbol{b}}-\mathbf{b})$ in $\operatorname{Col} A^{\perp}$

SOLUTION OF THE GENREAL LEAST-SQUARES PROBLEM

The least-squares solution $\hat{\mathbf{x}}$ is in \mathbb{R}^{n}.

SOLUTION OF THE GENREAL LEAST-SQUARES PROBLEM

- Theorem 13: The set of least-squares solutions of $A \boldsymbol{x}=\boldsymbol{b}$ coincides with the nonempty set of solutions of the normal equation.

$$
A^{T} A \mathrm{x}=A^{T} \mathrm{~b}
$$

- Example 1: Find a least-squares solution of the inconsistent system for

$$
A=\left[\begin{array}{ll}
4 & 0 \\
0 & 2 \\
1 & 1
\end{array}\right], \mathrm{b}=\left[\begin{array}{r}
2 \\
0 \\
11
\end{array}\right]
$$

- Then draw a picture.

APPLICATIONS TO LINEAR MODELS

- Least-Square Lines: We can fit a line to a set of data points.

FIGURE 1 Fitting a line to experimental data.

- How to set up the system of linear equations can be seen from the following table:

Predicted Observed

y-value	y-value	
$\beta_{0}+\beta_{1} x_{1}$	$=$	y_{1}
$\beta_{0}+\beta_{1} x_{2}$	$=$	y_{2}
\vdots		\vdots
$\beta_{0}+\beta_{1} x_{n}$	$=$	y_{n}

We obtain an equation

$$
X \boldsymbol{\beta}=\mathbf{y}, \quad \text { where } X=\left[\begin{array}{cc}
1 & x_{1} \\
1 & x_{2} \\
\vdots & \vdots \\
1 & x_{n}
\end{array}\right], \quad \boldsymbol{\beta}=\left[\begin{array}{l}
\beta_{0} \\
\beta_{1}
\end{array}\right], \quad \mathbf{y}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]
$$

Looking at the table we want to minimize:

APPLICATIONS TO LINEAR MODELS

Hence we have to solve the Least Square Problem:

- Example: Find the Least-Square Line that best fits the data points $(2,1),(5,2),(7,3)$ and $(8,3)$. Draw a picture.

