Math 22 – Linear Algebra and its applications

- Lecture 23 -

Instructor: Bjoern Muetzel

6 Orthogonality and Least Squares

6.4

THE GRAM-SCHMIDT PROCESS

Summary:

If $B = \{b_1, \ldots, b_p\}$ is a basis of a subspace *W*. Then we can find an **orthogonal basis** for *W*. The idea is to **project** b_k **orthogonally** onto the **subspace spanned by** the previous vectors $\{b_1, \ldots, b_{k-1}\}$.

GEOMETRIC INTERPRETATION

THE GRAM-SCHMIDT PROCESS

Theorem 11: (Gram-Schmidt Process)

Given a basis $\{b_1, \ldots, b_p\}$ for a nonzero subspace W of \mathbb{R}^n , define

$$u_{1} = b_{1}$$

$$u_{2} = b_{2} - \frac{b_{2} \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}$$

$$u_{3} = b_{3} - \frac{b_{3} \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1} - \frac{b_{3} \cdot u_{2}}{u_{2} \cdot u_{2}} u_{2}$$

$$\vdots$$

$$u_{p} = b_{p} - \frac{b_{p} \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1} - \frac{b_{p} \cdot u_{2}}{u_{2} \cdot u_{2}} u_{1} - \dots - \frac{b_{p} \cdot u_{p-1}}{u_{p-1} \cdot u_{p-1}} u_{p-1}.$$

Then $\{u_1, \ldots, u_p\}$ is an orthogonal basis for W. In addition

Span{ $u_1, ..., u_k$ } = **Span**{ $b_1, ..., b_k$ } for $1 \le k \le p$.

$$b_2$$

$$\widehat{b}_2 = proj_{u_1}(b_2)$$

$$u_2 = b_2 - \widehat{b}_2$$

$$b_1 = u_1$$

$$\widehat{b}_2$$

Theorem 11*: (Gram-Schmidt Process) Given a basis $\{b_1, ..., b_p\}$ for a nonzero subspace W of \mathbb{R}^n , define $W_k = \text{Span}\{b_1, ..., b_k\}$ and

$$u_1 = b_1 \qquad \text{is in } W_1$$

$$u_2 = b_2 - proj_{W_1}(b_2) \qquad \text{is in } W_2$$

$$u_3 = b_3 - proj_{W_2}(b_3) \qquad \text{is in } W_3$$

$$\vdots$$

$$u_p = b_p - proj_{W_{p-1}}(b_p) \qquad \text{is in } W_p = W.$$

Then $\{u_1, \dots, u_p\}$ is an orthogonal basis for W and $\text{Span}\{u_1, \dots, u_k\} = W_k.$

THE GRAM-SCHMIDT PROCESS

Proof Recall that $W_k = \text{Span}\{b_1, \dots, b_k\}$. 1.) Set $u_1 = b_1$, then Span $\{u_1\} = Span\{b_1\}$. 2.) Suppose, for some k < p, we have constructed u_1, \ldots, u_k so that $\{u_1, \ldots, u_k\}$ is an orthogonal basis for W_k . We set $u_{k+1} = b_{k+1} - proj_{W_k}b_{k+1}$ Then i.) u_{k+1} is in W_k^{\perp} by the **Orthogonal Decomp. Theorem**. ii.) $u_{k+1} \neq 0$ as b_{k+1} is not in $W_k = \text{Span}\{b_1, ..., b_k\}$. Hence $\{u_1, \ldots, u_{k+1}\}$ is an orthogonal set of nonzero vectors in W_{k+1} and $\dim(W_{k+1}) = \mathbf{k}+\mathbf{1}$. By the **Basis Theorem** in Sect. 4.5, this set is a basis for W_{k+1} . $W_{k+1} = Span\{u_1, ..., u_{k+1}\}.$ Hence 3.) When k + 1 = p, the process stops.

Note: Theorem 5, 8 and 11 all make use of the same formula for orthogonal projection $\hat{y} = proj_W(y)$ of a vector y onto a subspace W=Span{ $u_1, ..., u_p$ }, where { $u_1, ..., u_p$ } is an orthogonal basis:

$$\widehat{y} = \frac{y \cdot u_1}{u_1 \cdot u_1} u_1 + \cdots + \frac{y \cdot u_p}{u_p \cdot u_p} u_p.$$

This formula can be easily remembered by noticing that due to the orthogonality

$$\widehat{y} = proj_{u_1}(y) + \dots + proj_{u_p}(y).$$

THE GRAM-SCHMIDT PROCESS

• Example 1: Let
$$b_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, b_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}, b_3 = \begin{bmatrix} 0 \\ 3 \\ 1 \\ 2 \end{bmatrix}.$$

1.) Find an orthogonal basis $\{u_1, u_2\}$ for Span $\{b_1, b_2\}$.

2.) Complete $\{u_1, u_2\}$ to an to an orthogonal basis for Span $\{b_1, b_2, b_3\}$.

3.) What do we have to do to get an orthonormal basis?

Theorem 12: (QR Factorization) If *A* is an $m \times n$ matrix with **linearly independent columns**, then *A* can be factored as

$$A = QR$$
, where

- *i.*) Q is an $m \times n$ matrix whose columns form an **orthonormal basis** for Col A.
- *ii.)* R is an $n \times n$ upper triangular invertible matrix with positive entries on its diagonal.
- Proof The columns of A form a basis {a₁,..., a_n} for Col A.
 1.) Construct an orthogonal basis {u₁,..., u_n} for W = Col A as in Theorem 11 (see below). Using matrix notation we get:

$$\boldsymbol{A} = [a_1, \dots, a_n] = [u_1, \dots, u_n] \tilde{\boldsymbol{R}} = \boldsymbol{U} \tilde{\boldsymbol{R}}.$$
 ($\tilde{\boldsymbol{R}}$ upper triangular)

$$u_{1} = a_{1}$$

$$u_{2} = a_{2} - \frac{a_{2} \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}$$

$$u_{3} = a_{3} - \frac{a_{3} \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1} - \frac{a_{3} \cdot u_{2}}{u_{2} \cdot u_{2}} u_{2}$$
(rearrange)
$$\vdots$$

$$u_{n} = a_{n} - \frac{a_{n} \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1} - \frac{a_{n} \cdot u_{2}}{u_{2} \cdot u_{2}} u_{1} - \dots - \frac{a_{n} \cdot u_{n-1}}{u_{n-1} \cdot u_{n-1}} u_{n-1}$$
We scale $\{u_{1}, \dots, u_{n}\}$ to get an orthonormal basis $\{q_{1}, \dots, q_{n}\}$

2.) We scale $\{u_1, \ldots, u_n\}$ to get an orthonormal basis $\{q_1, \ldots, q_n\}$. In matrix notation this translates to

 $UD = Q = [q_1, ..., q_n], \quad \text{where } D \text{ is a diagonal matrix.}$ Hence $A = UDD^{-1}\tilde{R} = (UD)(D^{-1}\tilde{R}) = QR.$

How can we find Q and R?

We can find Q by finding U using **Theorem 11** and then normalizing the orthogonal basis. We can obtain R by recalling that $Q^T Q = I_n$. Hence A = QR implies that

$$Q^T \mathbf{A} = \mathbf{R}.$$

QR FACTORIZATION OF MATRICES

Example 2: Let
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \\ 0 & 1 & 0 \end{bmatrix}$$
. Recall that the columns of A are the

vectors from **Example 1**. An orthogonal basis for $ColA = Span\{u_1, u_2, u_3\}$ was found in that example. It was

$$[\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3] = U = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \\ 0 & 1 & -1 \end{bmatrix}.$$

Find Q and R, such that A = QR as in **Theorem 12**.