Math 22 -
Linear Algebra and its applications

- Lecture 23 -

Instructor: Bjoern Muetzel

6

Orthogonality and Least

 Squares
6.4

THE GRAM-SCHMIDT PROCESS

Summary:

If $\mathrm{B}=\left\{b_{1}, \ldots, b_{\mathrm{p}}\right\}$ is a basis of a subspace W. Then we can find an orthogonal basis for W. The idea is to project $b_{\mathbf{k}}$ orthogonally onto the subspace spanned by the previous vectors $\left\{\boldsymbol{b}_{\mathbf{1}}, \ldots, \boldsymbol{b}_{\mathrm{k}-1}\right\}$.

GEOMETRIC INTERPRETATION

THE GRAM-SCHMIDT PROCESS

- Theorem 11: (Gram-Schmidt Process)

Given a basis $\left\{b_{1}, \ldots, b_{\mathrm{p}}\right\}$ for a nonzero subspace W of \mathbb{R}^{n}, define

$$
\begin{aligned}
& u_{1}=b_{1} \\
& \mathrm{u}_{2}=b_{2}-\frac{b_{2} \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1} \\
& u_{3}=b_{3}-\frac{b_{3} \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}-\frac{b_{3} \cdot u_{2}}{u_{2} \cdot u_{2}} u_{2} \\
& \quad \vdots \\
& u_{p}=b_{p}-\frac{b_{p} \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}-\frac{b_{v} \cdot u_{2}}{u_{2} \cdot u_{2}} u_{1}-\ldots-\frac{b_{p} \cdot u_{p-1}}{u_{p-1} \cdot u_{p-1}} u_{p-1} \cdot
\end{aligned}
$$

Then $\left\{u_{1}, \ldots, u_{\mathrm{p}}\right\}$ is an orthogonal basis for W. In addition

$$
\operatorname{Span}\left\{\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{\mathbf{k}}\right\}=\operatorname{Span}\left\{\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{\mathbf{k}}\right\} \text { for } 1 \leq k \leq p .
$$

$$
u_{2}=b_{2}-\widehat{b}_{2} \underbrace{\widehat{b}_{2}}_{-} \boldsymbol{b}_{1}
$$

Theorem 11*: (Gram-Schmidt Process) Given a basis $\left\{b_{1}, \ldots, b_{\mathrm{p}}\right\}$ for a nonzero subspace W of \mathbb{R}^{n}, define $\boldsymbol{W}_{\boldsymbol{k}}=\operatorname{Span}\left\{\boldsymbol{b}_{\mathbf{1}}, \ldots, \boldsymbol{b}_{\mathbf{k}}\right\} \quad$ and

$$
\begin{array}{ll}
u_{1}=b_{1} & \text { is in } W_{1} \\
\mathrm{u}_{2}=b_{2}-\operatorname{proj}_{W_{1}}\left(b_{2}\right) & \text { is in } W_{2} \\
u_{3}=b_{3}-\operatorname{proj}_{W_{2}}\left(b_{3}\right) & \text { is in } W_{3} \\
\quad \vdots & \\
u_{p}=b_{p}-\operatorname{proj}_{W_{p-1}}\left(b_{p}\right) & \text { is in } W_{p}=W .
\end{array}
$$

Then $\left\{u_{1}, \ldots, u_{\mathrm{p}}\right\}$ is an orthogonal basis for W and $\operatorname{Span}\left\{u_{1}, \ldots, u_{\mathrm{k}}\right\}=W_{k}$.

THE GRAM-SCHMIDT PROCESS

Proof Recall that $\boldsymbol{W}_{\mathbf{k}}=\operatorname{Span}\left\{\mathbf{b}_{\mathbf{1}}, \ldots, \mathbf{b}_{\mathbf{k}}\right\}$.
1.) Set $u_{1}=b_{1}$, then $\operatorname{Span}\left\{\mathrm{u}_{1}\right\}=\operatorname{Span}\left\{\mathrm{b}_{1}\right\}$.
2.) Suppose, for some $k<p$, we have constructed $\mathbf{u}_{1}, \ldots, \mathbf{u}_{\mathrm{k}}$ so that $\left\{\mathrm{u}_{1}, \ldots, \mathrm{u}_{\mathrm{k}}\right\}$ is an orthogonal basis for W_{k}. We set

$$
\mathbf{u}_{k+1}=\mathbf{b}_{\mathbf{k}+1}-\operatorname{proj}_{\mathrm{w}_{\mathbf{k}}} \mathbf{b}_{\mathrm{k}+1}
$$

Then i.) $\mathrm{u}_{\mathrm{k}+1}$ is in W_{k}^{\perp} by the Orthogonal Decomp. Theorem.
ii.) $u_{k+1} \neq 0 \quad$ as b_{k+1} is not in $W_{k}=\operatorname{Span}\left\{b_{1}, \ldots, b_{k}\right\}$.

Hence $\left\{u_{1}, \ldots, u_{k+1}\right\}$ is an orthogonal set of nonzero vectors in $\mathrm{W}_{\mathrm{k}+1}$ and $\operatorname{dim}\left(\mathrm{W}_{\mathrm{k}+1}\right)=\mathbf{k}+\mathbf{1}$. By the Basis Theorem in Sect. 4.5, this set is a basis for $\mathrm{W}_{\mathrm{k}+1}$. Hence

$$
\mathrm{W}_{\mathrm{k}+1}=\operatorname{Span}\left\{\mathrm{u}_{1}, \ldots, \mathrm{u}_{\mathrm{k}+1}\right\} .
$$

3.) When $\mathrm{k}+1=p$, the process stops.

Note: Theorem 5, $\mathbf{8}$ and 11 all make use of the same formula for orthogonal projection $\widehat{\boldsymbol{y}}=\boldsymbol{\operatorname { p r o j }}_{\boldsymbol{W}}(\boldsymbol{y})$ of a vector y onto a subspace $\mathrm{W}=\operatorname{Span}\left\{u_{1}, \ldots, u_{\mathrm{p}}\right\}$, where $\left\{u_{1}, \ldots, u_{\mathrm{p}}\right\}$ is an orthogonal basis:

$$
\widehat{y}=\frac{y \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}+\cdots+\frac{y \cdot u_{p}}{u_{p} \cdot u_{p}} u_{p}
$$

This formula can be easily remembered by noticing that due to the orthogonality

$$
\widehat{\boldsymbol{y}}=\operatorname{proj}_{u_{1}}(y)+\cdots+\operatorname{proj}_{u_{p}}(y) .
$$

THE GRAM-SCHMIDT PROCESS

- Example 1: Let $b_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right], b_{2}=\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right], b_{3}=\left[\begin{array}{l}0 \\ 3 \\ 1 \\ 2\end{array}\right]$.
1.) Find an orthogonal basis $\left\{u_{1}, u_{2}\right\}$ for $\operatorname{Span}\left\{b_{1}, b_{2}\right\}$.
2.) Complete $\left\{u_{1}, u_{2}\right\}$ to an to an orthogonal basis for $\operatorname{Span}\left\{\mathrm{b}_{1}, \mathrm{~b}_{2}, \mathrm{~b}_{3}\right\}$.
3.) What do we have to do to get an orthonormal basis?

QR FACTORIZATION

Theorem 12: (QR Factorization) If A is an $m \times n$ matrix with linearly independent columns, then A can be factored as

$$
A=Q R, \quad \text { where }
$$

i.) Q is an $m \times n$ matrix whose columns form an orthonormal basis for $\operatorname{Col} A$.
ii.) R is an $n \times n$ upper triangular invertible matrix with positive entries on its diagonal.

- Proof The columns of A form a basis $\left\{\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{n}}\right\}$ for $\operatorname{Col} A$.
1.) Construct an orthogonal basis $\left\{\mathrm{u}_{1}, \ldots, \mathrm{u}_{\mathrm{n}}\right\}$ for $W=\operatorname{Col} A$ as in Theorem 11 (see below). Using matrix notation we get:

$$
\boldsymbol{A}=\left[\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{n}}\right]=\left[\mathrm{u}_{1}, \ldots, \mathrm{u}_{\mathrm{n}} \tilde{R}=\boldsymbol{U} \widetilde{\boldsymbol{R}} . \quad(\tilde{R} \text { upper triangular })\right.
$$

$$
\begin{aligned}
& u_{1}=a_{1} \\
& \mathrm{u}_{2}=a_{2}-\frac{a_{2} \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1} \\
& u_{3}=a_{3}-\frac{a_{3} \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}-\frac{a_{3} \cdot u_{2}}{u_{2} \cdot u_{2}} u_{2} \quad \text { (rearrang } \\
& \quad \vdots \\
& u_{n}=a_{n}-\frac{a_{n} \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}-\frac{a_{n} \cdot u_{2}}{u_{2} \cdot u_{2}} u_{1}-\ldots-\frac{a_{n} \cdot u_{n-1}}{u_{n-1} \cdot u_{n-1}} u_{n-1}
\end{aligned}
$$

2.) We scale $\left\{u_{1}, \ldots, u_{n}\right\}$ to get an orthonormal basis $\left\{q_{1}, \ldots, q_{n}\right\}$. In matrix notation this translates to

$$
\boldsymbol{U} \boldsymbol{D}=\boldsymbol{Q}=\left[\mathbf{q}_{1}, \ldots, \mathbf{q}_{\mathbf{n}}\right], \quad \text { where } \boldsymbol{D} \text { is a diagonal matrix. }
$$

Hence

$$
A=U D D^{-1} \tilde{R}=(U D)\left(D^{-1} \tilde{R}\right)=Q R
$$

How can we find Q and R ?

We can find \boldsymbol{Q} by finding \boldsymbol{U} using Theorem 11 and then normalizing the orthogonal basis. We can obtain \boldsymbol{R} by recalling that $Q^{T} Q=I_{n}$. Hence $A=Q R$ implies that

$$
\boldsymbol{Q}^{T} \mathbf{A}=\mathbf{R}
$$

QR FACTORIZATION OF MATRICES

Example 2: Let $A=\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \\ 0 & 1 & 0\end{array}\right]$. Recall that the columns of A are the vectors from Example 1. An orthogonal basis for $\operatorname{Col} A=\operatorname{Span}\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}\right\}$ was found in that example. It was

$$
\left[\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}\right]=U=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 2 \\
0 & 1 & -1
\end{array}\right]
$$

Find Q and R, such that $A=Q R$ as in Theorem 12.

