Math 22 -
Linear Algebra and its applications

- Lecture 22 -

Instructor: Bjoern Muetzel

GENERAL INFORMATION

- Office hours: Tu 1-3 pm, Th, Sun 2-4 pm in KH 229

Tutorial: Tu, Th, Sun 7-9 pm in KH 105

- Homework 7: due Wednesday at $\mathbf{4}$ pm outside KH 008
- Thursday: x-hour will be a lecture

6

Orthogonality and Least

 Squares
6.3

ORTHOGONAL PROJECTIONS

Summary:

1.) We can find the orthogonal projection of a vector \boldsymbol{y} in \mathbb{R}^{n} onto a subspace W. This allows us to approximate the vector y with a vector $\widehat{\boldsymbol{y}}$ in \boldsymbol{W}.
2.) We will see that, in a certain sense, this is the best approximation of a vector \mathbf{y} with a vector in \mathbf{W}.

W
The orthogonal projection of \mathbf{y} onto W.

GEOMETRIC INTERPRETATION

THE ORTHOGONALDECOMPOSITION THEOREM

- Theorem 8: Let \boldsymbol{W} be a subspace of \mathbb{R}^{n}. Then each y in \mathbb{R}^{n} can be written uniquely in the form

$$
\begin{array}{|c|}
\hline y=\widehat{\boldsymbol{y}}+\boldsymbol{z} \tag{1}\\
\operatorname{in} W \quad \text { in } W^{\perp}
\end{array}
$$

- In fact, if $\left\{u_{1}, u_{2}, \ldots, u_{p}\right\}$ is any orthogonal basis of W, then

$$
\begin{equation*}
\widehat{y}=\frac{y \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}+\cdots+\frac{y \cdot u_{p}}{u_{p} \cdot u_{p}} u_{p} \tag{2}
\end{equation*}
$$

and

$$
\begin{array}{|l}
\hline \widehat{\boldsymbol{y}}=\operatorname{proj}_{\boldsymbol{u}_{\mathbf{1}}}(y)+\cdots+\operatorname{proj}_{\boldsymbol{u}_{\boldsymbol{p}}}(y)=\operatorname{proj}_{W}(\mathrm{y}) \\
\hline \hline \boldsymbol{z}=y-\widehat{\boldsymbol{y}}
\end{array}
$$

Note: The vector $\widehat{\boldsymbol{y}}=\operatorname{proj}_{W}(\mathrm{y})$ is called the orthogonal projection of y onto W. The total projection decomposes into line projections.

Picture:

Proof of Theorem 8: 1.) This construction is correct

a) \hat{y} in W : it can be written as a linear combination of basis vectors of W.
b) z is in W^{\perp}

- We know that $\boldsymbol{z}=\boldsymbol{y}-\widehat{\boldsymbol{y}}$. Since u_{1} is orthogonal to u_{2}, \ldots, u_{p}, it follows from the equation $\hat{y}=\frac{y \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}+\cdots+\frac{y \cdot u_{p}}{u_{p} \cdot u_{p}} u_{p}$ that
- Thus z is orthogonal to u_{1}. Similarly, z is orthogonal to each u_{j} in the basis for W. Hence z is orthogonal to every vector in W. That is, z is in W^{\perp}.

THE ORTHOGONALDECOMPOSITION THEOREM

2.) Uniqueness of the decomposition:

Example 1: Let $u_{1}=\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right], u_{2}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$ and $y=\left[\begin{array}{l}3 \\ 3 \\ 3\end{array}\right]$.
1.) Show that $\left\{u_{1}, u_{2}\right\}$ is an orthogonal basis for $W=\operatorname{Span}\left\{u_{1}, u_{2}\right\}$.
2.) Write y as the sum of a vector \hat{y} in W and a vector z in W^{\perp}.
3.) Draw a picture of u_{1}, u_{2}, y and \hat{y} in \mathbb{R}^{3}.

THE BEST APPROXIMATION THEOREM

- Theorem 9: Let W be a subspace of \mathbb{R}^{n} and y be a vector in \mathbb{R}^{n}. Let $\hat{y}=\operatorname{proj}_{W}(y)$ be the orthogonal projection of y onto W. Then $\widehat{\boldsymbol{y}}$ is the closest point in \boldsymbol{W} to \boldsymbol{y}, i.e.

$$
\|y-\hat{y}\|<\|y-v\|
$$

for all v in W distinct from \hat{y}. Hence $\|y-\hat{y}\|=\operatorname{dist}(\mathrm{y}, \mathrm{W})$.

- The vector \hat{y} is called the best approximation to y by elements of W.

W

The orthogonal projection of \mathbf{y} onto W is the closest point in W to \mathbf{y}.

Note: The distance from y to v, given by $\|\boldsymbol{y}-\boldsymbol{v}\|$, can be regarded as the "error" of using v in place of y. The theorem says that this error is $\operatorname{minimized}$ when $\boldsymbol{v}=\widehat{\boldsymbol{y}}$.

Proof of Theorem 9:

PROPERTIES OF ORTHOGONAL PROJECTIONS

- Example 2: Let $u_{1}=\left[\begin{array}{c}5 \\ -2 \\ 1\end{array}\right], u_{2}=\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right]$ and $y=\left[\begin{array}{c}-1 \\ -5 \\ 10\end{array}\right]$.
- Let $W=\operatorname{Span}\left\{u_{1}, u_{2}\right\}$. Show that $\left\{u_{1}, u_{2}\right\}$ is an orthogonal basis for W. Then find the distance

$$
\|y-\hat{y}\|=\operatorname{dist}(y, W) \quad \text { from } \mathbf{y} \text { to } W .
$$

PROPERTIES OF ORTHOGONAL PROJECTIONS

- Theorem 10: If $\left\{u_{1}, u_{2}, \ldots, u_{p}\right\}$ is an orthonormal basis for a subspace W of \mathbb{R}^{n}, then

$$
\hat{y}=\operatorname{proj}_{W}(y)=\left(y \cdot u_{1}\right) u_{1}+\left(y \cdot u_{2}\right) u_{2}+\cdots+\left(y \cdot u_{p}\right) u_{p}
$$

If $\mathrm{U}=\left[u_{1}, u_{2}, \ldots, u_{p}\right]$, then

$$
\operatorname{proj}_{W}(y)=U U^{T} y \quad \text { for all } y \text { in } \mathbb{R}^{n} .
$$

- Proof: The first part follows immediately from Theorem 8. For the second part we rewrite the equation in matrix notation.

