Math 22 – Linear Algebra and its applications

- Lecture 22 -

Instructor: Bjoern Muetzel

GENERAL INFORMATION

• Office hours: Tu 1-3 pm, Th, Sun 2-4 pm in KH 229

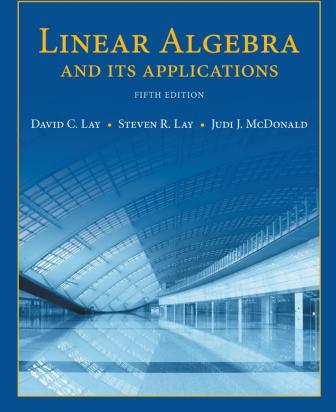
Tutorial: Tu, Th, Sun 7-9 pm in KH 105

- Homework 7: due Wednesday at 4 pm outside KH 008
- **Thursday: x-hour** will be a **lecture**

6 Orthogonality and Least Squares

6.3

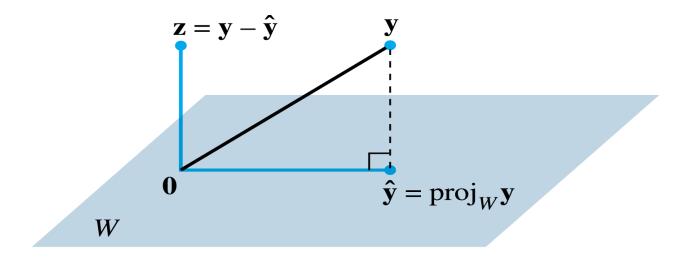
ORTHOGONAL PROJECTIONS



Summary:

1.) We can find the **orthogonal projection** of a **vector** y in \mathbb{R}^n onto a **subspace** W. This allows us to **approximate** the **vector** y with a vector \hat{y} in W.

2.) We will see that, in a certain sense, this is the **best approximation** of a vector **y** with a vector in **W**.



The orthogonal projection of \mathbf{y} onto W.

GEOMETRIC INTERPRETATION

THE ORTHOGONAL DECOMPOSITION THEOREM

■ **Theorem 8:** Let *W* be a **subspace** of ℝⁿ. Then each *y* in ℝⁿ can be written uniquely in the form

$$y = \hat{y} + z$$
. (1)
in W in W^{\perp}

In fact, if $\{u_1, u_2, \dots, u_p\}$ is any orthogonal basis of W, then

$$\widehat{\boldsymbol{y}} = \frac{\boldsymbol{y} \cdot \boldsymbol{u}_1}{\boldsymbol{u}_1 \cdot \boldsymbol{u}_1} \boldsymbol{u}_1 + \dots + \frac{\boldsymbol{y} \cdot \boldsymbol{u}_p}{\boldsymbol{u}_p \cdot \boldsymbol{u}_p} \boldsymbol{u}_p \qquad (2) \quad \text{or}$$

$$\widehat{\boldsymbol{y}} = proj_{\boldsymbol{u}_1}(\boldsymbol{y}) + \dots + proj_{\boldsymbol{u}_p}(\boldsymbol{y}) = \mathbf{proj}_W(\boldsymbol{y})$$

$$\overline{\boldsymbol{z}} = \boldsymbol{y} - \widehat{\boldsymbol{y}} \quad .$$

and

Note: The vector $\hat{y} = \text{proj}_W(y)$ is called the orthogonal projection of y onto *W*. The total projection decomposes into line projections. Picture:

Proof of Theorem 8: <u>1.) This construction is correct</u>

<u>a) \hat{y} in *W*</u>: it can be written as a linear combination of basis vectors of W. <u>b) *z* is in W^{\perp} </u>

• We know that $\mathbf{z} = \mathbf{y} - \hat{\mathbf{y}}$. Since u_1 is orthogonal to u_2, \dots, u_p , it follows from the equation $\hat{y} = \frac{y \cdot u_1}{u_1 \cdot u_1} u_1 + \dots + \frac{y \cdot u_p}{u_p \cdot u_p} u_p$ that

Thus z is orthogonal to u₁. Similarly, z is orthogonal to each u_j in the basis for W. Hence z is orthogonal to every vector in W. That is, z is in W[⊥].

THE ORTHOGONAL DECOMPOSITION THEOREM

2.) Uniqueness of the decomposition:

Example 1: Let
$$u_1 = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$$
, $u_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$ and $y = \begin{bmatrix} 3 \\ 3 \\ 3 \end{bmatrix}$.
1.) Show that $\{u_1, u_2\}$ is an orthogonal basis for $W = Span\{u_1, u_2\}$.
2.) Write y as the sum of a vector \hat{y} in W and a vector z in W^{\perp} .
3.) Draw a picture of u_1, u_2, y and \hat{y} in \mathbb{R}^3 .

THE BEST APPROXIMATION THEOREM

• Theorem 9: Let *W* be a subspace of \mathbb{R}^n and *y* be a vector in \mathbb{R}^n . Let $\hat{y} = proj_W(y)$ be the orthogonal projection of *y* onto *W*. Then \hat{y} is the closest point in *W* to *y*, i.e.

$$\|y - \hat{y}\| < \|y - \nu\|$$

for all v in W distinct from \hat{y} . Hence $||y - \hat{y}|| = \text{dist}(y, W)$.

• The vector \hat{y} is called **the best approximation to y by elements of** W.



The orthogonal projection of y onto W is the closest point in W to y.

Note: The distance from y to v, given by ||y - v||, can be regarded as the "error" of using v in place of y. The theorem says that this error is minimized when $v = \hat{y}$.

Proof of Theorem 9:

PROPERTIES OF ORTHOGONAL PROJECTIONS

• Example 2: Let
$$u_1 = \begin{bmatrix} 5 \\ -2 \\ 1 \end{bmatrix}$$
, $u_2 = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$ and $y = \begin{bmatrix} -1 \\ -5 \\ 10 \end{bmatrix}$.

Let W = Span{u₁, u₂}. Show that {u₁, u₂} is an orthogonal basis for W. Then find the distance

$$||y - \hat{y}|| = \operatorname{dist}(y, W)$$
 from y to W.

PROPERTIES OF ORTHOGONAL PROJECTIONS

Theorem 10: If {u₁, u₂, ..., u_p} is an orthonormal basis for a subspace W of Rⁿ, then

$$\hat{y} = proj_W(y) = (y \cdot u_1)u_1 + (y \cdot u_2)u_2 + \dots + (y \cdot u_p)u_p$$

If
$$U = [u_1, u_2, ..., u_p]$$
, then

$$proj_W(y) = UU^T y \quad \text{for all } y \text{ in } \mathbb{R}^n.$$

• **Proof:** The first part follows immediately from **Theorem 8**. For the second part we rewrite the equation in matrix notation.