Math 22 – Linear Algebra and its applications

- Lecture 21 -

Instructor: Bjoern Muetzel

GENERAL INFORMATION

• **Office hours:** Tu 1-3 pm, Th, **Sun 2-4 pm** in **KH 229**

Tutorial: Tu, Th, Sun 7-9 pm in KH 105

- Midterm 2: today at 4 pm in Carpenter 013
 - Topics: Chapter 2.1 4.7 (included)
 - about 8-9 questions
 - Practice exam 2 solutions available

6 Orthogonality and Least Squares

6.2

ORTHOGONAL SETS

FIFTH EDITION

David C. Lay • Steven R. Lay • Judi J. McDonald

Summary:

If the vectors of a set **S** are **orthogonal**, then they are pairwise orthogonal to each other. If these **vectors** are additionally **normalized** then they look like a standard basis.

GEOMETRIC INTERPRETATION

ORTHOGONAL SETS

Definition: A set of vectors {u₁,...,u_p} in Rⁿ is said to be an orthogonal set if these vectors are pairwise orthogonal, that is, if

• **Theorem 4:** If $S = \{u_1, ..., u_p\}$ is an orthogonal set of **nonzero** vectors in \mathbb{R}^n , then *S* is linearly independent and hence is a basis for the subspace spanned by *S*.

Proof:

Definition: An **orthogonal basis** for a <u>subspace W of \mathbb{R}^n is a basis for W that is also an orthogonal set.</u>

Note: Theorem 4 says that an orthogonal set S of nonzero vectors is automatically a basis for $Span{S}$.

ORTHOGONAL SETS

- Theorem 5: Let {u₁,...,u_p} be an orthogonal basis for a subspace W of Rⁿ. For each <u>y in W</u>, the weights in the linear combination are given by
 - $y = x_1u_1 + \dots + x_pu_p$, where $x_j = \frac{y \cdot u_j}{u_j \cdot u_j}$ for all j in $\{1, \dots, p\}$. **Note:** For the matrix $U = [u_1, u_2, \dots, u_p]$ and \underline{y} in \underline{W} this means that we can immediately write down the **solution** x for $\mathbf{U}x = y$.

Proof:

Example: Let
$$u_1 = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$
 and $u_2 = \begin{bmatrix} -3 \\ 1 \end{bmatrix}$ in \mathbb{R}^2 and $U = \begin{bmatrix} u_1, u_2 \end{bmatrix}$.
1.) Show that u_1 and u_2 are orthogonal.
2.) For $y = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, find *x*, such that $Ux = y$ using **Theorem 5.**

ORTHOGONAL PROJECTION

Theorem: Let u be a nonzero vector in Rⁿ and L= Span{u}. Then the orthogonal projection of a vector y in Rⁿ onto u (or L) is

$$\hat{y} = proj_L(y) = \frac{y \cdot u}{u \cdot u}u$$

The component of y orthogonal to u is

$$z=y-\hat{y}.$$

• **Example:** Orthogonal projection in \mathbb{R}^2 .

- Note: The vectors z and ŷ are orthogonal as ŷ is in Span{u} and z is orthogonal to u.
- Proof of the Theorem:

ORTHOGONAL PROJECTION

Example: Let
$$y = \begin{bmatrix} 7 \\ 6 \end{bmatrix}$$
 and $u = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$ be vectors in \mathbb{R}^2 .

- 1.) Find the orthogonal projection \hat{y} of y onto u.
- 2.) Write y as the sum of the two orthogonal vectors \hat{y} in Span{u} and z, which is orthogonal to u.
- 3.) Draw a picture of the vectors y, u, \hat{y} and z in \mathbb{R}^2 .

- Definition: A set {u₁,...,u_p} is an orthonormal set if it is an orthogonal set of unit vectors.
- If W is the <u>subspace</u> spanned by such a set, then {u₁,...,u_p} is an orthonormal basis for W, since the set is automatically linearly independent, by Theorem 4. x₃

■ Note 1: The simplest example of an orthonormal set is the standard basis {e₁,...,e_n} for ℝⁿ or subsets of {e₁,...,e_n}.

 Note 2: When the vectors in an orthogonal set of nonzero vectors are normalized to have unit length, the new vectors will be an orthonormal set.

• Example: Let
$$v_1 = \frac{1}{\sqrt{11}} \cdot \begin{bmatrix} 3\\1\\1 \end{bmatrix}$$
, $v_2 = \frac{1}{\sqrt{6}} \cdot \begin{bmatrix} -1\\2\\1 \end{bmatrix}$ and $v_3 = \frac{1}{\sqrt{66}} \cdot \begin{bmatrix} -1\\-4\\7 \end{bmatrix}$.
Show that $\{v_1, v_2, v_3\}$ is an orthonormal basis of \mathbb{R}^3 , then draw a picture.

- **Theorem 6:** An $m \times n$ matrix U, where $n \leq m$ has orthonormal columns if and only if $U^T U = I_n$.
- **Proof:** Let $U = [u_1, u_2, ..., u_n]$ and compute $U^T U$.

• Theorem 7: Let U be an $m \times n$ matrix, where $n \le m$ with orthonormal columns, and let x and y be in \mathbb{R}^n . Then

a.
$$(Ux) \cdot (Uy) = x \cdot y$$
.

- **b.** ||Ux|| = ||x||.
- c. $(Ux) \cdot (Uy) = 0$ if and only if $x \cdot y = 0$.
- Note: Properties (a) and (c) say that the linear mapping $x \mapsto Ux$ preserves lengths, distance and orthogonality.
- Proof of Theorem 7: