Math 22 -
Linear Algebra and its applications

- Lecture 21 -

Instructor: Bjoern Muetzel

GENERAL INFORMATION

- Office hours: Tu 1-3 pm, Th, Sun 2-4 pm in KH 229

Tutorial: Tu, Th, Sun 7-9 pm in KH 105

- Midterm 2: today at $\mathbf{4} \mathbf{~ p m}$ in Carpenter 013
- Topics: Chapter 2.1-4.7 (included)
- about 8-9 questions
- Practice exam 2 solutions available

6

Orthogonality and Least

 Squares
6.2

ORTHOGONAL SETS

Summary:

If the vectors of a set \mathbf{S} are orthogonal, then they are pairwise orthogonal to each other. If these vectors are additionally normalized then they look like a standard basis.

GEOMETRIC INTERPRETATION

ORTHOGONAL SETS

- Definition: A set of vectors $\left\{u_{l}, \ldots, u_{p}\right\}$ in \mathbb{R}^{n} is said to be an orthogonal set if these vectors are pairwise orthogonal, that is, if

- Theorem 4: If $\mathrm{S}=\left\{u_{l}, \ldots, u_{p}\right\}$ is an orthogonal set of nonzero vectors in \mathbb{R}^{n}, then S is linearly independent and hence is a basis for the subspace spanned by S.
Proof:

Definition: An orthogonal basis for a subspace W of \mathbb{R}^{n} is a basis for W that is also an orthogonal set.

Note: Theorem 4 says that an orthogonal set S of nonzero vectors is automatically a basis for $\operatorname{Span}\{\mathrm{S}\}$.

ORTHOGONAL SETS

- Theorem 5: Let $\left\{u_{1}, \ldots, u_{p}\right\}$ be an orthogonal basis for a subspace W of \mathbb{R}^{n}. For each y in W, the weights in the linear combination are given by

$$
y=x_{1} u_{1}+\cdots+x_{p} u_{p}, \quad \text { where } \quad x_{j}=\frac{y \cdot u_{j}}{u_{j} \cdot u_{j}} \text { for all } j \text { in }\{1, \ldots, \mathrm{p}\}
$$

Note: For the matrix $U=\left[u_{1}, u_{2}, \ldots, u_{p}\right]$ and y in W this means that we can immediately write down the solution \boldsymbol{x} for $\mathbf{U x}=\boldsymbol{y}$.

Proof:

Example: Let $u_{1}=\left[\begin{array}{l}1 \\ 3\end{array}\right]$ and $u_{2}=\left[\begin{array}{c}-3 \\ 1\end{array}\right]$ in \mathbb{R}^{2} and $U=\left[u_{1}, u_{2}\right]$.
1.) Show that u_{1} and u_{2} are orthogonal.
2.) For $y=\left[\begin{array}{l}2 \\ 1\end{array}\right]$, find x, such that $\mathrm{U} x=y$ using Theorem 5.

ORTHOGONAL PROJECTION

- Theorem: Let u be a nonzero vector in \mathbb{R}^{n} and $L=\operatorname{Span}\{u\}$. Then the orthogonal projection of a vector \boldsymbol{y} in \mathbb{R}^{n} onto $\boldsymbol{u}($ or L) is

$$
\hat{y}=\operatorname{proj}_{L}(y)=\frac{y \cdot u}{u \cdot u} u
$$

The component of \boldsymbol{y} orthogonal to \boldsymbol{u} is

$$
z=y-\hat{y}
$$

- Example: Orthogonal projection in \mathbb{R}^{2}.

Finding α to make $\mathbf{y}-\hat{\mathbf{y}}$ orthogonal to \mathbf{u}.

- Note: The vectors z and \hat{y} are orthogonal as \hat{y} is in $\operatorname{Span}\{u\}$ and z is orthogonal to u.

- Proof of the Theorem:

ORTHOGONAL PROJECTION

Example: Let $y=\left[\begin{array}{l}7 \\ 6\end{array}\right]$ and $u=\left[\begin{array}{l}4 \\ 2\end{array}\right]$ be vectors in \mathbb{R}^{2}.
1.) Find the orthogonal projection \hat{y} of y onto u.
2.) Write y as the sum of the two orthogonal vectors \hat{y} in $\operatorname{Span}\{u\}$ and z, which is orthogonal to u.
3.) Draw a picture of the vectors y, u, \hat{y} and z in \mathbb{R}^{2}.

ORTHONORMAL SETS

- Definition: A set $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{\mathrm{p}}\right\}$ is an orthonormal set if it is an orthogonal set of unit vectors.
- If W is the subspace spanned by such a set, then $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{\mathrm{p}}\right\}$ is an orthonormal basis for W, since the set is automatically linearly independent, by Theorem 4.

- Note 1: The simplest example of an orthonormal set is the standard basis $\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right\}$ for \mathbb{R}^{n} or subsets of $\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right\}$.
- Note 2: When the vectors in an orthogonal set of nonzero vectors are normalized to have unit length, the new vectors will be an orthonormal set.
- Example: Let $v_{1}=\frac{1}{\sqrt{11}} \cdot\left[\begin{array}{l}3 \\ 1 \\ 1\end{array}\right], v_{2}=\frac{1}{\sqrt{6}} \cdot\left[\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right]$ and $v_{3}=\frac{1}{\sqrt{66}} \cdot\left[\begin{array}{c}-1 \\ -4 \\ 7\end{array}\right]$. Show that $\left\{v_{1}, v_{2}, v_{3}\right\}$ is an orthonormal basis of \mathbb{R}^{3}, then draw a picture.

ORTHONORMALSETS

ORTHONORMALSETS

- Theorem 6: An $m \times n$ matrix U, where $n \leq m$ has orthonormal columns if and only if $U^{T} U=I_{n}$.
- Proof: Let $U=\left[u_{1}, u_{2}, \ldots, u_{n}\right]$ and compute $U^{T} U$.

ORTHONORMAL SETS

Theorem 7: Let U be an $m \times n$ matrix, where $n \leq m$ with orthonormal columns, and let x and y be in \mathbb{R}^{n}. Then
a. $(U x) \cdot(U y)=x \cdot y$.
b. $\|U x\|=\|x\|$.
c. $(U x) \cdot(U y)=0$ if and only if $x \cdot y=0$.

Note: Properties (a) and (c) say that the linear mapping $x \mapsto U x$ preserves lengths, distance and orthogonality.

Proof of Theorem 7:

