Math 22 – Linear Algebra and its applications

- Lecture 20 -

Instructor: Bjoern Muetzel

GENERAL INFORMATION

- Office hours: Tu 1-3 pm, Th, Sun 2-4 pm in KH 229
 <u>Tutorial:</u> Tu, Th, Sun 7-9 pm in KH 105
 Come tomorrow to practice for the exam.
- Homework 6: due today at 4 pm outside KH 008. Please divide into the parts A, C and D. Exercise 1 b) is optional.
- Midterm 2: Friday Nov 1 at 4 pm in Carpenter 013
 - **Topics: Chapter 2.1 4.7** (included)
 - about **8-9** questions
 - Practice exam 2 solutions available

6 Orthogonality and Least Squares

6.1

INNER PRODUCT, LENGTH, AND ORTHOGONALITY

Summary:

If **u** and **v** are vectors in \mathbb{R}^n then the **inner product** $\mathbf{u}^T \mathbf{v} = \mathbf{u} \cdot \mathbf{v}$ allows us to measure **angles**, **lengths** and **distances**.

GEOMETRIC INTERPRETATION

Inner product in \mathbb{R}^2

Given two vectors $u = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ and $v = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ how can we measure the length

of these vectors and the angle between them?

INNER PRODUCT

If **u** and **v** are vectors in \mathbb{R}^n , then we can regard **u** and **v** as $n \times 1$ matrices. The transpose \mathbf{u}^T is a $1 \times n$ matrix, and the matrix product $\mathbf{u}^T \mathbf{v}$ is a 1×1 matrix, which we write as a real number without brackets.

Definition: If
$$u = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}$$
 and $v = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$ are vectors in \mathbb{R}^n , then

the **inner product** or **dot product** of **u** and **v** is

$$\begin{bmatrix} u^T v = u \cdot v \end{bmatrix} = \begin{bmatrix} u_1, u_2, \dots, u_n \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} = \begin{bmatrix} u_1 v_1 + u_2 v_2 + \dots + u_n v_n \end{bmatrix}.$$

Theorem 1: Let \mathbf{u} , \mathbf{v} , and \mathbf{w} be vectors in \mathbb{R}^n , and let c in \mathbb{R} be a scalar. Then

a.
$$u \cdot v = v \cdot u$$

b. $(u + v) \cdot w = u \cdot w + v \cdot w$
c. $(cu) \cdot v = c(u \cdot v) = u \cdot (cv)$
d. $u \cdot u \ge 0$, and $u \cdot u = 0$ if and only if $u = 0$

Consequence: (Linearity)

$$(c_1u_1 + \ldots + c_pu_p) \cdot w = c_1(u_1 \cdot w) + \cdots + c_p(u_p \cdot w)$$

Proof: 1.) a. and d. can be easily checked.

- b. and c. are true as the dot product is a matrix multiplication which is linear. By a. it is linear from "both sides".
- 3.) The consequence follows from b. and c.

LENGTH

- If v is in \mathbb{R}^n , with entries v_1, \ldots, v_n , then the square root of $v \cdot v$ is well-defined as $v \cdot v \ge 0$. We define:
- **Definition:** The **length** (or **norm**) ||v|| of **v** is the nonnegative real number defined by

$$\|v\| = \sqrt{v \cdot v} = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$$

, hence

$$\|v\|^2 = v \cdot v.$$

Example: Length in \mathbb{R}^2 $v = \begin{bmatrix} a \\ b \end{bmatrix}$ |b| |a| |a| v_1 x_2 x_2 $\sqrt{a^2 + b^2}$ |a| v_1

Interpretation of $\|\mathbf{v}\|$ as length.

Definition: A vector v in \mathbb{R}^n , that has length

 $||v|| = \sqrt{v \cdot v} = 1$ is called a **unit vector**.

Note: If a vector v in \mathbb{R}^n is multiplied by a scalar c in \mathbb{R} , then

LENGTH

- Example: Let $v = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$ be a vector in \mathbb{R}^3 .
 - 1.) Calculate $\|v\|$.

2.) Find a unit vector u in the same direction as v. What is $||u||^2$?

3.) Draw a coordinate system with v, u and the unit sphere $S = \{x \text{ in } \mathbb{R}^3, \|x\| = 1\}$ in \mathbb{R}^3 .

ANGLE

Definition: Let *u* and *v* be vectors in \mathbb{R}^n . Then the **angle** $\theta = \measuredangle(u, v)$ between *u* and *v* is given by

 $\boxed{\cos(\theta) = \frac{u \cdot v}{\|u\| \|v\|}} \quad \text{or} \quad \boxed{\theta = \arccos\left(\frac{u \cdot v}{\|u\| \|v\|}\right)}.$ **Example:** For $u = \begin{bmatrix} 3\\ 4 \end{bmatrix}$ and $v = \begin{bmatrix} -2\\ 2 \end{bmatrix}$, compute $\cos(\measuredangle(u, v))$. Estimate the angle $\measuredangle(u, v)$ with a calculator and with a sketch of u and v in \mathbb{R}^2 . Does the angle change if we normalize u and v?

DISTANCE

Definition: For u and v in \mathbb{R}^n , the **distance between** u and v, written as dist(u,v), is the length of the vector u-v. That is,

The distance between \mathbf{u} and \mathbf{v} is the length of $\mathbf{u} - \mathbf{v}$.

Example: Compute the distance between $u = \begin{bmatrix} 5 \\ 1 \end{bmatrix}$ and $v = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$.

Check your calculation with a sketch of u and v in \mathbb{R}^2 .

ORTHOGONALITY

- Note: Two nonzero vectors u and v in \mathbb{R}^n are perpendicular, i.e. $[\not 4(u,v) = \frac{\pi}{2}]$ or $\cos(\not 4(u,v)) = 0$ if and only if $u \cdot v = 0$.
- **Definition:** Two vectors u and v in \mathbb{R}^n are **orthogonal** to each other if $u \cdot v = 0$.

Example: The zero vector **0** is orthogonal to every vector in \mathbb{R}^n .

• Theorem 2: Two vectors u and v in \mathbb{R}^n are orthogonal if and only if $\|u + v\|^2 = \|u\|^2 + \|v\|^2$.

Proof:

Definition: (Orthogonal Complements)

- 1.) If a vector \mathbf{z} is orthogonal to every vector in a subspace W of \mathbb{R}^n , then \mathbf{z} is said to be **orthogonal to** W.
- 2.) The set of all vectors z that are orthogonal to W is called the orthogonal complement of W and is denoted by W[⊥].
 W[⊥] is read as "W perpendicular" or simply "W perp".
- Note: 1.) A vector x is in W[⊥] if and only if x is orthogonal to every vector in a set that spans W.
 2.) W[⊥] is a subspace of ℝⁿ.
- Proof: Idea: Use <u>linearity</u> of the inner product for 1.). Then check the subspace criteria for 2.) See HW 7.

Theorem 3: Let *A* be an $m \times n$ matrix. The orthogonal complement of the row space of *A* is the null space of *A*, and the orthogonal complement of the column space of *A* is the null space of A^T :

$$(Row A)^{\perp} = Nul A$$
 and $(Col A)^{\perp} = Nul A^{T}$

Proof: See HW 7

How can we find the orthogonal complement W^{\perp} of a subspace W?

Note: Given a subspace W= Span{ $a_1, a_2, ..., a_m$ } in \mathbb{R}^n . Let *A* be the $n \times m$ matrix $A = [a_1, a_2, ..., a_m]$. Theorem 3 states that $W^{\perp} = (Col \ A)^{\perp} = Nul \ A^T$.

Example: Let W = Span{ $\begin{bmatrix} 3\\4\\1 \end{bmatrix}$, $\begin{bmatrix} 3\\-1\\0 \end{bmatrix}$ }.

Find W^{\perp} , then sketch W and W^{\perp} in \mathbb{R}^3 . Hint: Use Theorem 3.