Math 22 -
Linear Algebra and its applications

- Lecture 20 -

Instructor: Bjoern Muetzel

GENERAL INFORMATION

- Office hours: Tu 1-3 pm, Th, Sun 2-4 pm in KH 229

Tutorial: Tu, Th, Sun 7-9 pm in KH 105
Come tomorrow to practice for the exam.

- Homework 6: due today at $\mathbf{4} \mathbf{~ p m}$ outside KH 008. Please divide into the parts A, C and D. Exercise $\mathbf{1} \mathbf{b}$) is optional.
- Midterm 2: Friday Nov 1 at $\mathbf{4}$ pm in Carpenter 013
- Topics: Chapter 2.1-4.7 (included)
- about 8-9 questions
- Practice exam 2 solutions available

6

Orthogonality and Least

 Squares
6.1

INNER PRODUCT, LENGTH, AND ORTHOGONALITY

Summary:

If \mathbf{u} and \mathbf{v} are vectors in \mathbb{R}^{n} then the inner product $\mathbf{u}^{T} \mathbf{v}=\mathbf{u} \cdot \mathbf{v}$ allows us to measure angles, lengths and distances.

$$
\cos \theta=\frac{u \cdot v}{\|u\|\|v\|} ; \quad \theta=\cos ^{-1}\left(\frac{u \cdot v}{\|u\|\|v\|}\right)
$$

GEOMETRIC INTERPRETATION

Inner product in $\mathbb{R}^{\mathbf{2}}$

Given two vectors $\mathrm{u}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$ and $v=\left[\begin{array}{c}1 \\ -1\end{array}\right]$ how can we measure the length of these vectors and the angle between them?

INNER PRODUCT

If \mathbf{u} and \mathbf{v} are vectors in \mathbb{R}^{n}, then we can regard \mathbf{u} and \mathbf{v} as $n \times 1$ matrices. The transpose \mathbf{u}^{T} is a $1 \times n$ matrix, and the matrix product $\mathbf{u}^{T} \mathbf{v}$ is a 1×1 matrix, which we write as a real number without brackets.

Definition: If $u=\left[\begin{array}{c}u_{1} \\ u_{2} \\ \vdots \\ u_{n}\end{array}\right]$ and $v=\left[\begin{array}{c}v_{1} \\ v_{2} \\ \vdots \\ v_{n}\end{array}\right]$ are vectors in \mathbb{R}^{n}, then
the inner product or dot product of \mathbf{u} and \mathbf{v} is

$$
u^{T} v=u \cdot v=\left[u_{1}, u_{2}, \ldots, u_{n}\right]\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right]=u_{1} v_{1}+u_{2} v_{2}+\cdots+u_{n} v_{n}
$$

Theorem 1: Let \mathbf{u}, \mathbf{v}, and \mathbf{w} be vectors in \mathbb{R}^{n}, and let c in \mathbb{R} be a scalar. Then
a. $u \cdot v=v \cdot u$
b. $(u+v) \cdot w=u \cdot w+v \cdot w$
c. $(c u) \cdot v=c(u \cdot v)=u \cdot(c v)$
d. $u \cdot u \geq 0$, and $u \cdot u=0$ if and only if $u=0$.

Consequence: (Linearity)

$\left(c_{1} u_{1}+\ldots+c_{p} u_{p}\right) \cdot w=c_{1}\left(u_{1} \cdot w\right)+\cdots+c_{p}\left(u_{p} \cdot w\right)$.

Proof: 1.) a. and d. can be easily checked.
2.) b. and c. are true as the dot product is a matrix multiplication which is linear. By a. it is linear from "both sides".
3.) The consequence follows from b. and c.

LENGTH

- If \mathbf{v} is in \mathbb{R}^{n}, with entries v_{1}, \ldots, v_{n}, then the square root of $v \cdot v$ is well-defined as $v \cdot v \geq 0$. We define:
- Definition: The length (or norm) $\|v\|$ of \mathbf{v} is the nonnegative real number defined by

$$
\|v\|=\sqrt{v \cdot v}=\sqrt{v_{1}^{2}+v_{2}^{2}+\cdots+v_{n}^{2}} \quad, \text { hence } \quad\|v\|^{2}=v \cdot v
$$

Example: Length in \mathbb{R}^{2}

Interpretation of $\|\mathbf{v}\|$ as length.

Definition: A vector v in \mathbb{R}^{n}, that has length

$$
\|v\|=\sqrt{v \cdot v}=1 \quad \text { is called a unit vector. }
$$

Note: If a vector v in \mathbb{R}^{n} is multiplied by a scalar c in \mathbb{R}, then

$$
\|c v\|=\sqrt{c v \cdot c v}=\sqrt{c^{2}(v \cdot v)}=|c| \cdot\|v\| .
$$

Definition: If we divide a vector $v \neq 0$ by its length $\|v\|$ then we obtain a unit vector $\boldsymbol{u}=\frac{\mathbf{1}}{\|v\|} \cdot \boldsymbol{v}$. The process of creating u from v is called normalizing v, and we say that \boldsymbol{u} is in the same direction as \boldsymbol{v}.

LENGTH

- Example: Let $v=\left[\begin{array}{l}2 \\ 2\end{array}\right]$ be a vector in \mathbb{R}^{3}.
1.) Calculate $\|v\|$.
2.) Find a unit vector u in the same direction as v. What is $\|u\|^{2}$?
3.) Draw a coordinate system with v, u and the unit sphere

$$
S=\left\{x \text { in } \mathbb{R}^{3},\|x\|=1\right\} \text { in } \mathbb{R}^{3} .
$$

ANGLE

Definition: Let u and v be vectors in \mathbb{R}^{n}. Then the angle $\boldsymbol{\theta}=\Varangle(\boldsymbol{u}, \boldsymbol{v})$ between u and v is given by

$$
\cos (\theta)=\frac{u \cdot v}{\|u\|\|v\|}
$$

$$
\theta=\arccos \left(\frac{u \cdot v}{\|u\|\|v\|}\right) \text {. }
$$

Example: For $u=\left[\begin{array}{l}3 \\ 4\end{array}\right]$ and $v=\left[\begin{array}{c}-2 \\ 2\end{array}\right]$, compute $\cos (\Varangle(u, v))$. Estimate the angle $\Varangle(u, v)$ with a calculator and with a sketch of u and v in \mathbb{R}^{2}.

Does the angle change if we normalize u and v ?

DISTANCE

Definition: For u and v in \mathbb{R}^{n}, the distance between \boldsymbol{u} and \boldsymbol{v}, written as $\operatorname{dist}(u, v)$, is the length of the vector u-v. That is,

$$
\operatorname{dist}(u, v)=\|u-v\|
$$

Example: Distance in \mathbb{R}^{2}

The distance between \mathbf{u} and \mathbf{v} is the length of $\mathbf{u}-\mathbf{v}$.

$$
\text { Example: Compute the distance between } u=\left[\begin{array}{l}
5 \\
1
\end{array}\right] \text { and } v=\left[\begin{array}{l}
3 \\
2
\end{array}\right] \text {. }
$$ Check your calculation with a sketch of u and v in \mathbb{R}^{2}.

ORTHOGONALITY

- Note: Two nonzero vectors u and v in \mathbb{R}^{n} are perpendicular, i.e. $\Varangle(u, v)=\frac{\pi}{2}$ or $\cos (\Varangle(u, v))=0$ if and only if $u \cdot v=0$.
- Definition: Two vectors u and v in \mathbb{R}^{n} are orthogonal to each other if

$$
u \cdot v=0
$$

Example: The zero vector $\mathbf{0}$ is orthogonal to every vector in \mathbb{R}^{n}.

- Theorem 2: Two vectors u and v in \mathbb{R}^{n} are orthogonal if and only if

$$
\|u+v\|^{2}=\|u\|^{2}+\|v\|^{2} .
$$

Proof:

Definition: (Orthogonal Complements)

1.) If a vector \mathbf{z} is orthogonal to every vector in a subspace W of \mathbb{R}^{n}, then \mathbf{z} is said to be orthogonal to W.
2.) The set of all vectors \mathbf{z} that are orthogonal to W is called the orthogonal complement of W and is denoted by W^{\perp}. W^{\perp} is read as " W perpendicular" or simply " W perp".

Note: 1.) A vector \mathbf{x} is in W^{\perp} if and only if \mathbf{x} is orthogonal to every vector in a set that spans W.
2.) W^{\perp} is a subspace of \mathbb{R}^{n}.

Proof: Idea: Use linearity of the inner product for 1.). Then check the subspace criteria for 2.) See HW 7.

ORTHOGONALITY

Theorem 3: Let A be an $m \times n$ matrix. The orthogonal complement of the row space of A is the null space of A, and the orthogonal complement of the column space of A is the null space of A^{T} :

$$
(\operatorname{Row} A)^{\perp}=\operatorname{Nul} A \quad \text { and } \quad(\operatorname{Col} A)^{\perp}=\operatorname{Nul} A^{T}
$$

Proof: See HW 7

How can we find the orthogonal complement W^{\perp} of a subspace W ?

Note: Given a subspace $\mathrm{W}=\operatorname{Span}\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$ in \mathbb{R}^{n}.
Let A be the $n \times m$ matrix $\mathrm{A}=\left[a_{1}, a_{2}, \ldots, a_{m}\right]$.
Theorem 3 states that $W^{\perp}=(\operatorname{Col} A)^{\perp}=\operatorname{Nul} A^{T}$.

$$
\text { Example: Let } \mathrm{W}=\operatorname{Span}\left\{\left[\begin{array}{l}
3 \\
4 \\
1
\end{array}\right],\left[\begin{array}{c}
3 \\
-1 \\
0
\end{array}\right]\right\}
$$

Find W^{\perp}, then sketch W and W^{\perp} in \mathbb{R}^{3}. Hint: Use Theorem 3.

