Math 22 – Linear Algebra and its applications

- Lecture 19 -

Instructor: Bjoern Muetzel

GENERAL INFORMATION

- Office hours: Tu 1-3 pm, Th, Sun 2-4 pm in KH 229
 <u>Tutorial:</u> Tu, Th, Sun 7-9 pm in KH 105
- <u>Homework 6:</u> due Wednesday at 4 pm outside KH 008. Please divide into the parts A, C and D. Exercise 1 b) is optional.
- <u>Wednesday:</u> Quiz!
- Midterm 2: Friday Nov 1 at 4 pm in Carpenter 013
 - Topics: Chapter 2.1 4.7 (included)
 - about 8-9 questions
 - Practice exam 2 available on Sunday

4.7

CHANGE OF BASIS

FIFTH EDITION

David C. Lay • Steven R. Lay • Judi J. McDonald

Summary:

Given a description of a **vector** with respect to **two different bases** then the **change-of-coordinates matrix** allows us to switch from one description to another.

GEOMETRIC INTERPRETATION

FIGURE 1 Two coordinate systems for the same vector space.

Question: Let **x** in \mathbb{R}^2 be given in B-coordinates $[x]_B$. What are $[x]_C$?

GEOMETRIC INTERPRETATION

CHANGE OF BASIS IN \mathbb{R}^n

Let $B = \{b_1, \dots, b_n\}$ and $C = \{c_1, \dots, c_n\}$ in \mathbb{R}^n be two different bases.

How can we pass from B-coordinates to C-coordinates and vice versa?

- If B= {b₁,..., b_n} and E= {e₁,..., e_n} is the standard basis in ℝⁿ, then we know the answer. We have seen in Lecture 16:
- **Reminder:** $P_B = [b_1, \dots, b_n]$ is the **change-of-coordinates matrix** from B to the standard basis E in \mathbb{R}^n . For any u in \mathbb{R}^n

$$u = [u]_E = P_B[u]_B$$
 and $[u]_B = P_B^{-1}[u]_E = P_B^{-1}u$

and therefore P_B^{-1} is a **change-of-coordinate matrix** from E to B.

This means we can pass from B-coordinates to E-coordinates and then to C-coordinates:

 $u = P_B[u]_B$ and $[u]_C = P_C^{-1}u$ hence $[u]_C = P_C^{-1} \cdot P_B[u]_B$.

$$[u]_C \xrightarrow{P_C^{-1}} u = [u]_E \xleftarrow{P_B} [u]_B$$

Theorem: If $B = \{b_1, \ldots, b_n\}$ and $C = \{c_1, \ldots, c_n\}$ in \mathbb{R}^n are two different bases, then the coordinates $[u]_C$ and $[u]_B$ satisfy:

$$[u]_{C} = P_{C}^{-1} \cdot P_{B}[u]_{B} = P_{C}^{B}[u]_{B}$$

We call $P_C^B = P_{C \leftarrow B}$ the change-of-coordinates matrix from B to C.

CHANGE OF BASIS IN \mathbb{R}^n

• **Example:** Consider the two bases in \mathbb{R}^2

$$B = \{b_1, b_2\} = \{ \begin{bmatrix} -9\\1 \end{bmatrix}, \begin{bmatrix} -5\\-1 \end{bmatrix} \} \text{ and } C = \{c_1, c_2\} = \{ \begin{bmatrix} 1\\-4 \end{bmatrix}, \begin{bmatrix} 3\\-5 \end{bmatrix} \}.$$

Find the change-of-coordinates matrix $P_C^B = P_{C \leftarrow B}$ from B to C.

CHANGE OF BASIS IN GENERAL

• **Theorem 15:** Let $B = \{b_1, \ldots, b_n\}$ and $C = \{c_1, \ldots, c_n\}$ be bases for a vector space <u>V</u>. Then there is a unique $n \times n$ matrix $P_C^B = P_{C \leftarrow B}$ such that

$$[x]_{\mathcal{C}} = P_{\mathcal{C}}^{B}[x]_{B} \qquad (1)$$

The columns of P^B_C are the C-coordinate vectors of the vectors in the basis B. That is

$$P_{C}^{B} = [[b_{1}]_{C}, [b_{2}]_{C}, \dots, [b_{n}]_{C}]$$
 (2)

FIGURE 2 Two coordinate systems for V.

Proof: Follows from the linearity of the coordinate map.

Definition: The matrix $P_C^B = P_{C \leftarrow B}$ in **Theorem 15** is called the change-of-coordinates matrix from B to C.

Multiplication by P_C^B converts *B*-coordinates into *C*-coordinates: **Theorem:** Let $B = \{b_1, \ldots, b_n\}$ and $C = \{c_1, \ldots, c_n\}$ be bases for a vector space *V*. Then a) $P_B^C = P_{B \leftarrow C} = (P_{C \leftarrow B})^{-1} = (P_C^B)^{-1}$ or b) $[x]_C = P_C^B [x]_B$ and $[x]_B = (P_C^B)^{-1} [x]_C$

Note: To change coordinates between two nonstandard bases in \mathbb{R}^n , we need Theorem 15. The theorem shows that to solve the change-of-basis problem, we need the coordinate vectors of the old basis relative to the new basis.

CHANGE OF BASIS IN GENERAL

Proof of the Theorem:

1.) The columns of P_B^C are linearly independent because they are the coordinate vectors of the linearly independent set *B*. We have by (1) $[x]_C = P_C^B [x]_B.$

- 2.) Since P_C^B is square, it must be invertible, by the Invertible Matrix Theorem. Left-multiplying both sides of Equation (1) by its inverse matrix $(P_C^B)^{-1}$ yields $(P_C^B)^{-1}[x]_C = [x]_B.$
- 3.) Thus $(P_C^B)^{-1}$ is the matrix that converts C-coordinates into B-coordinates. That is $(P_C^B)^{-1} = P_B^C$.

Example: Consider the bases $B = \{b_1, b_2\}$ and $C = \{c_1, c_2\}$ of a twodimensional subspace V in \mathbb{R}^{100} . Let u in V be given in B-coordinates

by $[u]_B = \begin{bmatrix} 1 \\ -4 \end{bmatrix}$. We know that $b_1 = c_1 - c_2$ and $b_2 = c_1 + c_2$. 1.) Find the C-coordinates of *u*.

2.) Write down $P_C^B = P_{C \leftarrow B}$ and calculate $P_B^C = P_{B \leftarrow C}$.