Math 22 -
Linear Algebra and its applications

- Lecture 19 -

Instructor: Bjoern Muetzel

GENERAL INFORMATION

- Office hours: Tu 1-3 pm, Th, Sun 2-4 pm in KH 229

Tutorial: Tu, Th, Sun $\mathbf{7 - 9} \mathbf{~ p m}$ in KH 105

- Homework 6: due Wednesday at $\mathbf{4} \mathbf{~ p m}$ outside KH 008. Please divide into the parts A, C and D. Exercise 1 b) is optional.
- Wednesday: Quiz!
- Midterm 2: Friday Nov 1 at $\mathbf{4}$ pm in Carpenter 013
- Topics: Chapter 2.1-4.7 (included)
- about 8-9 questions
- Practice exam 2 available on Sunday

4

Vector Spaces

4.7

CHANGE OF BASIS

Linear Algebra AND ITS APPLICATIONS

 FIFTH EDITIONDavid C. Lay • Steven R. Lay • Judi J. McDonald

Summary:

Given a description of a vector with respect to two different bases then the change-of-coordinates matrix allows us to switch from one description to another.

GEOMETRIC INTERPRETATION

Example: Consider the two bases for \mathbb{R}^{2}

$$
B=\left\{\mathrm{b}_{1}, \mathrm{~b}_{2}\right\}=\left\{\left[\begin{array}{c}
2 \\
-1
\end{array}\right],\left[\begin{array}{c}
-1 \\
2
\end{array}\right]\right\} \text { and } C=\left\{\mathrm{c}_{1}, \mathrm{c}_{2}\right\}=\left\{\left[\begin{array}{c}
0.3 \\
-0.3
\end{array}\right],\left[\begin{array}{c}
0.8 \\
0.2
\end{array}\right]\right\}
$$

(a)

(b)

FIGURE 1 Two coordinate systems for the same vector space.
Question: Let \mathbf{x} in \mathbb{R}^{2} be given in B-coordinates $[\mathrm{x}]_{B}$. What are $[\mathrm{x}]_{C}$?

GEOMETRIC INTERPRETATION

CHANGE OF BASIS $\operatorname{IN} \mathbb{R}^{n}$

Let $B=\left\{\mathrm{b}_{1}, \ldots, \mathrm{~b}_{\mathrm{n}}\right\}$ and $C=\left\{\mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{n}}\right\}$ in \mathbb{R}^{n} be two different bases.

How can we pass from B-coordinates to C-coordinates and vice versa?

- If $B=\left\{\mathrm{b}_{1}, \ldots, \mathrm{~b}_{\mathrm{n}}\right\}$ and $\mathrm{E}=\left\{\mathrm{e}_{1}, \ldots, \mathrm{e}_{\mathrm{n}}\right\}$ is the standard basis in \mathbb{R}^{n}, then we know the answer. We have seen in Lecture 16:
- Reminder: $P_{\mathrm{B}}=\left[\mathrm{b}_{1}, \ldots, \mathrm{~b}_{\mathrm{n}}\right]$ is the change-of-coordinates matrix from B to the standard basis E in \mathbb{R}^{n}. For any u in \mathbb{R}^{n}

$$
u=[u]_{E}=P_{B}[u]_{B} \text { and }[u]_{B}=P_{B}^{-1}[u]_{E}=P_{B}^{-1} u
$$

and therefore P_{B}^{-1} is a change-of-coordinate matrix from E to B .

This means we can pass from B-coordinates to E-coordinates and then to C-coordinates:

$$
u=P_{B}[u]_{B} \quad \text { and } \quad[u]_{C}=P_{C}^{-1} u \text { hence }[u]_{C}=P_{C}^{-1} \cdot P_{B}[u]_{B} .
$$

Theorem: If $B=\left\{\mathrm{b}_{1}, \ldots, \mathrm{~b}_{\mathrm{n}}\right\}$ and $C=\left\{\mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{n}}\right\}$ in \mathbb{R}^{n} are two different bases, then the coordinates $[u]_{C}$ and $[u]_{B}$ satisfy:

$$
[u]_{C}=P_{C}^{-1} \cdot P_{B}[u]_{B}=P_{C}^{B}[u]_{B}
$$

We call $P_{C}^{B}=P_{C \leftarrow B}$ the change-of-coordinates matrix from B to \boldsymbol{C}.

CHANGE OF BASIS $\operatorname{IN} \mathbb{R}^{n}$

- Example: Consider the two bases in \mathbb{R}^{2}

$$
B=\left\{\mathrm{b}_{1}, \mathrm{~b}_{2}\right\}=\left\{\left[\begin{array}{c}
-9 \\
1
\end{array}\right],\left[\begin{array}{l}
-5 \\
-1
\end{array}\right]\right\} \quad \text { and } C=\left\{\mathrm{c}_{1}, \mathrm{c}_{2}\right\}=\left\{\left[\begin{array}{c}
1 \\
-4
\end{array}\right],\left[\begin{array}{c}
3 \\
-5
\end{array}\right]\right\} .
$$

Find the change-of-coordinates matrix $P_{C}^{B}=P_{C \leftarrow B}$ from B to C.

CHANGE OF BASIS IN GENERAL

- Theorem 15: Let $B=\left\{\mathrm{b}_{1}, \ldots, \mathrm{~b}_{\mathrm{n}}\right\}$ and $C=\left\{\mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{n}}\right\}$ be bases for a vector space \underline{V}. Then there is a unique $\mathrm{n} \times \mathrm{n}$ matrix $P_{C}^{B}=P_{C \leftarrow B}$ such that

$$
\begin{equation*}
[x]_{C}=P_{C}^{B}[x]_{B} \tag{1}
\end{equation*}
$$

- The columns of P_{C}^{B} are the C-coordinate vectors of the vectors in the basis B. That is

$$
\begin{equation*}
P_{C}^{B}=\left[\left[\mathrm{b}_{1}\right]_{C},\left[\mathrm{~b}_{2}\right]_{C}, \ldots,\left[\mathrm{~b}_{\mathrm{n}}\right]_{C}\right] \tag{2}
\end{equation*}
$$

FIGURE 2 Two coordinate systems for V.

Proof: Follows from the linearity of the coordinate map.

Definition: The matrix $P_{C}^{B}=P_{C \leftarrow B}$ in Theorem 15 is called the change-of-coordinates matrix from B to C.

Multiplication by P_{C}^{B} converts B-coordinates into C-coordinates:
Theorem: Let $B=\left\{\mathrm{b}_{1}, \ldots, \mathrm{~b}_{\mathrm{n}}\right\}$ and $C=\left\{\mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{n}}\right\}$ be bases for a vector space V. Then
a)

$$
P_{B}^{C}=P_{B \leftarrow C}=\left(P_{C \leftarrow B}\right)^{-1}=\left(P_{C}^{B}\right)^{-1} \quad \text { or }
$$

b) $[x]_{C}=P_{C}^{B}[x]_{\mathrm{B}}$ and $[x]_{B}=\left(P_{C}^{B}\right)^{-1}[x]_{\mathrm{C}}$

Note: To change coordinates between two nonstandard bases in \mathbb{R}^{n},we need Theorem 15. The theorem shows that to solve the change-ofbasis problem, we need the coordinate vectors of the old basis relative to the new basis.

CHANGE OF BASIS IN GENERAL

Proof of the Theorem:

1.) The columns of P_{B}^{C} are linearly independent because they are the coordinate vectors of the linearly independent set B. We have by (1)

$$
[x]_{C}=P_{C}^{B}[x]_{\mathrm{B}} .
$$

2.) Since P_{C}^{B} is square, it must be invertible, by the Invertible Matrix Theorem. Left-multiplying both sides of Equation (1) by its inverse matrix $\left(P_{C}^{B}\right)^{-1}$ yields

$$
\left(P_{C}^{B}\right)^{-1}[x]_{C}=[x]_{B} .
$$

3.) Thus $\left(P_{C}^{B}\right)^{-1}$ is the matrix that converts C -coordinates into B -coordinates. That is $\left(P_{C}^{B}\right)^{-1}=P_{B}^{C}$.

Example: Consider the bases $B=\left\{\mathrm{b}_{1}, \mathrm{~b}_{2}\right\}$ and $C=\left\{\mathrm{c}_{1}, \mathrm{c}_{2}\right\}$ of a twodimensional subspace V in \mathbb{R}^{100}. Let u in V be given in B -coordinates by $[u]_{B}=\left[\begin{array}{c}1 \\ -4\end{array}\right]$. We know that $\mathrm{b}_{1}=\mathrm{c}_{1}-\mathrm{c}_{2} \quad$ and $\mathrm{b}_{2}=\mathrm{c}_{1}+\mathrm{c}_{2}$. 1.) Find the C-coordinates of u.
2.) Write down $P_{C}^{B}=P_{C \leftarrow B}$ and calculate $P_{B}^{C}=P_{B \leftarrow C}$.

