Math 22 -
Linear Algebra and its applications

- Lecture 17 -

Instructor: Bjoern Muetzel

GENERAL INFORMATION

- Office hours: Tu 1-3 pm, Th, Sun 2-4 pm in KH 229
- Tutorial: Tu, Th, Sun 7-9 pm in KH 105
- Homework 5: due today at 4 pm outside KH 008. Please divide into the parts $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and \mathbf{D} and write your name on each part.
- Project: Meeting next weekend!
- Midterm 2: Friday Nov 1 at 4 pm in Carpenter 013

4

Vector Spaces

4.5

THE DIMENSION OF A VECTOR SPACE

Linear Algebra AND ITS APPLICATIONS FIFTH EDITION

David C. Lay • Steven R. Lay • Judi J. McDonald

- Summary:
1.) The number \mathbf{n} of basis vectors of a vector space V is an invariant. It is called the dimension of \boldsymbol{V}
2.) If the dimension \mathbf{n} of a vector space is known then we can find a basis by finding a spanning set or finding a linearly independent set of n vectors.

GEOMETRIC INTERPRETATION

DIMENSION OF A VECTOR SPACE

Reminder: A basis of a vector space V is a linearly independent set that spans V.

Theorem 9: If a vector space V has a basis $B=\left\{b_{1}, \ldots, b_{n}\right\}$, then any set in V containing more than n vectors must be linearly dependent.

Theorem 10: If a vector space V has a basis of n vectors, then every basis of V must consist of exactly n vectors.

Proof: Idea for Theorem 9: As $V \cong \mathbb{R}^{n}$ we can use the coordinate map

$$
[\cdot]_{B}=T_{B}: V \rightarrow \mathbb{R}^{n}, \mathrm{x} \mapsto T_{B}(x)=[x]_{B}
$$

and do all calculations in \mathbb{R}^{n}.

DIMENSION OF A VECTOR SPACE

DIMENSION OF A VECTOR SPACE

- Definition: If V is spanned by a finite set, then V is said to be finite-dimensional, and the dimension of V, written as $\operatorname{dim} V$, is the number of vectors in a basis for V.

$$
\operatorname{dim} V=\#(\text { basis vectors of } V)
$$

- The dimension of the zero vector space $\{\mathbf{0}\}$ is defined to be zero.
- If V is not spanned by a finite set, then V is said to be infinitedimensional.

DIMENSION OF A VECTOR SPACE

- Example 3: Find the dimension of the subspace

$$
H=\left\{\left[\begin{array}{c}
a-3 b+6 c \\
5 a+4 d \\
b-2 c-d \\
5 d
\end{array}\right]: a, b, c, d \text { in } \mathbb{R}\right\}
$$

BUILDING A BASIS FROM A LINEARLY INDEPENDENT SET

- Theorem 11: Let H be a subspace of a finite-dimensional vector space V. Any linearly independent set S in H can be expanded, if necessary, to a basis for H.
- Proof: Idea: If the set S does not span H, then we can add a vector u from H that is not in span S . $\{S \cup u\}$ is linearly independent.
- Consequence: Let H be a subspace of a finite-dimensional vector space V. Then
$\operatorname{dim} H \leq \operatorname{dim} V$
- Proof: A basis B of H is linearly independent. By Theorem 9 the basis B can not have more vectors than $\operatorname{dim} V$. Hence $\operatorname{dim} H \leq \operatorname{dim} V$.

BUILDING A BASIS FROM A LINEARLY INDEPENDENT SET

How can we complete a basis $B=\left\{b_{1}, \ldots, b_{k}\right\}$ of a subspace H in \mathbb{R}^{n} to a basis of $\mathbb{R}^{\boldsymbol{n}}$?

Solution: Let $\mathrm{E}=\left\{\mathrm{e}_{1}, \ldots, \mathrm{e}_{n}\right\}$ be the standard basis of \mathbb{R}^{n}.
1.) Write B in matrix form $\mathrm{B}=\left[\mathrm{b}_{1}, \ldots, \mathrm{~b}_{k}\right]$. B has a pivot in every column.
2.) Now bring B^{T} into echelon form U^{T}. U^{T} has a pivot in every row.
3.) For any non-pivot column \mathbf{j} of U^{T} add a row $\boldsymbol{e}_{\boldsymbol{j}}^{\boldsymbol{T}}$ to U^{T}. We call the matrix obtained this way $U^{\prime T}$.
4.) Then B together with the basis vectors $\mathbf{e}_{\mathbf{j}}$ from 3.) forms a basis of \mathbb{R}^{n}.

BUILDING A BASIS FROM A LINEARLY INDEPENDENT SET

Proof:

BUILDING A BASIS FROM A LINEARLY INDEPENDENT SET

Example: Let $\mathrm{b}_{1}=\left[\begin{array}{c}1 \\ -1 \\ 2\end{array}\right]$ and $\mathrm{b}_{2}=\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right]$.
Complete $\left\{\mathrm{b}_{1}, \mathrm{~b}_{2}\right\}$ to a basis for \mathbb{R}^{3}.

THE BASIS THEOREM

- Theorem 12: (Basis theorem) Let V be an n-dimensional vector space, where $n \geq 1$. Then
1.) Any linearly independent set of exactly n elements in V is automatically a basis for V.
2.) Any set of exactly n elements that spans V is automatically a basis for V.
- Proof: 1.) Follows from Theorem 11 or "pivot in every
2.) Follows from the Spanning Set Theorem or "pivot in every

REMINDER: KERNELAND RANGE

- Definition: Let $T: V \rightarrow W, x \mapsto T(x)$ be a linear transformation.
1.) The kernel (or null space) $\operatorname{Nul}(T)$ of such a T is the set of all \mathbf{u} in V such that $T(u)=\mathbf{0}$ in W.
2.) The range $T(V)$ of T is the set of all vectors in W of the form $T(\mathbf{x})$ for some \mathbf{x} in V.

REMINDER: BASES FOR NUL A AND COL A

- Theorem 6: Let $\mathrm{T}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation and let A be the corresponding standard matrix. Then the p pivot columns of \boldsymbol{A} form a basis for

$$
\mathrm{T}\left(\mathbb{R}^{n}\right)=\mathrm{Col} A=\left\{\mathrm{b} \text { in } \mathbb{R}^{m} \text {, s. } \mathrm{t} . \mathrm{Ax}=\mathrm{b} \text { for some } \mathrm{x} \text { in } \mathbb{R}^{n}\right\} .
$$

- Warning: The pivot columns of a matrix A can only be read from the echelon form U of A. But be careful to use the pivot columns of \boldsymbol{A} itself for the basis of $\operatorname{Col} \boldsymbol{A}$.
- Consequence: $\operatorname{dim} \mathrm{T}\left(\mathbb{R}^{n}\right)=\operatorname{dim} \operatorname{Col} \boldsymbol{A}=p=\#(\mathbf{p i v o t}$ columns of A$)$

REMINDER: BASES FOR NUL A AND COL A

We have seen in Lecture 13:

- Theorem: Let $\mathrm{T}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation and let A be the corresponding standard matrix. If

$$
\operatorname{Nul}(\mathrm{T})=\operatorname{Nul} A=\left\{\mathrm{x} \text { in } \mathbb{R}^{n}, \mathrm{Ax}=0\right\}
$$

contains nonzero vectors then a basis for $\operatorname{Nul} \boldsymbol{A}$ consist out of \mathbf{q} vectors, where \mathbf{q} equals the number of non-pivot columns of \mathbf{A}.

- Reminder: We can find Nul A explicitly by solving the homogeneous system of linear equations $\mathrm{Ax}=0$.
- Consequence:

$$
\operatorname{dim} \operatorname{Nul}(\mathrm{T})=\operatorname{dim} \operatorname{Nul} \boldsymbol{A}=q=\#(\text { non-pivot columns of } \mathrm{A})
$$

THE DIMENSIONS OF NUL A AND COL A

Consequence:

$$
\operatorname{dim} \operatorname{Col} A+\operatorname{dim} \operatorname{Nul} A=n=\operatorname{dim}\left(\mathbb{R}^{\mathrm{n}}\right) \text { or }
$$

$$
\operatorname{dim} T\left(\mathbb{R}^{n}\right)+\operatorname{dim} \operatorname{Nul}(T)=\operatorname{dim} \mathbb{R}^{n}
$$

DIMENSIONS OF NUL A AND COL A

Example: Let $T: \mathbb{R}^{5} \rightarrow \mathbb{R}^{3}$ be a linear transformation with standard matrix

$$
A=\left[\begin{array}{rrrrr}
-3 & 6 & -1 & 1 & -7 \\
1 & -2 & 2 & 3 & -1 \\
2 & -4 & 5 & 8 & -4
\end{array}\right]
$$

1.) Find a basis for $T\left(\mathbb{R}^{5}\right)=\operatorname{Col} A$ and determine $\operatorname{dim} \operatorname{Col} A$.
2.) What is the dimension of $\operatorname{Nul} \mathrm{A}=\operatorname{Nul}(\mathrm{T})$
3.) Find a basis for Nul A and complete this basis to a basis for \mathbb{R}^{5}

