Math 22 -
Linear Algebra and its applications

- Lecture 16 -

Instructor: Bjoern Muetzel

GENERAL INFORMATION

- Office hours: Tu 1-3 pm, Th, Sun 2-4 pm in KH 229
- Tutorial: Tu, Th, Sun 7-9 pm in KH 105
- Homework 5: due next Wednesday at $\mathbf{4} \mathbf{~ p m}$ outside KH 008. Please divide into the parts $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and \mathbf{D} and write your name on each part.
- Project: Meeting next weekend!.

4

Vector Spaces

4.4

COORDINATE SYSTEMS

Linear Algebra AND ITS APPLICATIONS

 FIFTH EDITIONDavid C. Lay • Steven R. Lay • Judi J. McDonald

- Summary:
1.) Using a basis we can define coordinates for a vector space V 2.) If V has \mathbf{n} basis vectors then it is isomorphic to \mathbb{R}^{n}
3.) This means we can perform all calculations in $\mathbb{R}^{\boldsymbol{n}}$ and then translate back into V

GEOMETRIC INTERPRETATION

COORDINATE MAPS

Theorem 7 (Unique Representation Theorem):
Let $B=\left\{b_{1}, \ldots, b_{n}\right\}$ be a basis for vector space V. Then for each \mathbf{x} in V, there exists a unique set of scalars c_{1}, \ldots, c_{n} such that

$$
\begin{equation*}
\mathrm{x}=c_{1} b_{1}+\cdots+c_{n} b_{n} \tag{1}
\end{equation*}
$$

Proof: We have seen this in Lecture 15.

Definition: Suppose $B=\left\{b_{1}, \ldots, b_{n}\right\}$ is a basis for V and \mathbf{x} is in V. The coordinates of \mathbf{x} relative to the basis \mathbf{B} (or the \mathbf{B}-coordinates of x) are the weights c_{1}, \ldots, c_{n} such that

$$
\mathrm{x}=c_{1} b_{1}+\cdots+c_{n} b_{n}
$$

COORDINATE MAPS

- If c_{1}, \ldots, c_{n} are the \mathbf{B}-coordinates of \mathbf{x}, then the vector in \mathbb{R}^{n}

$$
\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right]=[x]_{B}=T_{B}(x)
$$

is the coordinate vector of x or the B-coordinate vector of x.

- The mapping $[\cdot]_{B}=T_{B}: V \rightarrow \mathbb{R}^{n}, \mathrm{x} \mapsto T_{B}(x)=[x]_{B}$ is the coordinate mapping (determined by B).

COORDINATE MAPS

- Theorem 8: Let $B=\left\{b_{1}, \ldots, b_{n}\right\}$ be a basis for a vector space V. Then the coordinate mapping

$$
T_{B}: V \rightarrow \mathbb{R}^{n}, \mathrm{x} \mapsto T_{B}(x)=[x]_{B}
$$

is a linear transformation that is both one-to-one and onto.

- Proof: Take two arbitrary vectors in V, say

$$
\begin{aligned}
\mathrm{u} & =c_{1} b_{1}+\cdots+c_{n} b_{n} \\
\mathrm{w} & =d_{1} b_{1}+\cdots+d_{n} b_{n}
\end{aligned}
$$

Then

$$
u+w=
$$

- It follows that

$$
[\mathrm{u}+\mathrm{w}]_{\mathrm{B}}=\left[\begin{array}{c}
c_{1}+d_{1} \\
\vdots \\
c_{n}+d_{n}
\end{array}\right]=\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right]+\left[\begin{array}{c}
d_{1} \\
\vdots \\
d_{n}
\end{array}\right]=[\mathrm{u}]_{\mathrm{B}}+[\mathrm{w}]_{\mathrm{B}}
$$

- Hence
1.) $[u+w]_{B}=T_{B}(u+w)=T_{B}(\mathrm{u})+T_{B}(\mathrm{v})=[u]_{B}+[w]_{B}$.

So the coordinate mapping preserves addition.

- In a similar fashion for any a in \mathbb{R} we have

$$
\text { 2.) }[c u]_{B}=T_{B}(c u)=c T_{B}(\mathrm{u})=c[u]_{B} .
$$

But 1.) and 2.) imply that $\boldsymbol{T}_{\boldsymbol{B}}$ is a linear map.
T_{B} is both one-to-one and onto by the Unique Representation Theorem.

COORDINATE MAPS

- Note: The linearity of the coordinate mapping extends to linear combinations.
- If $\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}$ are in V and if $c_{1}, \ldots, c_{\mathrm{p}}$ are scalars, then

$$
\left[c_{1} \mathbf{u}_{1}+\ldots+c_{p} \mathbf{u}_{p}\right]_{\mathrm{B}}=c_{1}\left[\mathrm{u}_{1}\right]_{\mathrm{B}}+\ldots+c_{p}\left[\mathrm{u}_{p}\right]_{\mathrm{B}}
$$

- Definition: Let $T: V \rightarrow W$ be a linear transformation between vector spaces V and W. If T is both one to one and onto then T is called an isomorphism from V onto W.
In this case we say that V is isomorphic to W and write

$$
V \cong W
$$

$V \cong \mathbb{R}^{n}$

Note: Using the coordinate map from Theorem $\mathbf{8}$ we see that if V has a basis of \mathbf{n} vectors then V is isomorphic to \mathbb{R}^{n}.

We will see in the following lecture that the number of basis vectors of V is an invariant. It is the dimension $\operatorname{dim}(V)$ of V.

Hence any finite dimensional vector space is isomorphic to some $\mathbb{R}^{\boldsymbol{n}}$.

Consequence:

We can use a coordinate map to map any finite dimensional vector space V to some \mathbb{R}^{n}.
As the linearity of the coordinate map extends to linear combinations we can then perform all vector calculations in \mathbb{R}^{n} and then translate our result back to V.

$\mathrm{V} \cong \mathbb{R}^{n}$

- Example: The matrices

$$
E_{1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right], E_{2}=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right], E_{3}=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right], E_{4}=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
$$

form a standard basis \mathbf{E} of the vector space of 2×2 matrices. Consider the matrices

$$
A=\left[\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right], B=\left[\begin{array}{cc}
-3 & 4 \\
0 & 0
\end{array}\right], \mathrm{C}=\left[\begin{array}{cc}
1 & 4 \\
-2 & 2
\end{array}\right], D=\left[\begin{array}{cc}
0 & 8 \\
3 & -1
\end{array}\right]
$$

1.) Write down $[A]_{E},[B]_{E},[C]_{E}$ and $[D]_{E}$
2.) Determine whether $\{A, B, C, D\}$ is a linearly independent set.

CHANGE OF BASIS IN \mathbb{R}^{n}

Given a concrete basis $B=\left\{b_{1}, \ldots, b_{n}\right\}$ for \mathbb{R}^{n} and the usual standard basis $E=\left\{e_{1}, \ldots, e_{n}\right\}$.

How can we obtain the coordinate description of a vector in terms of B given in terms of E and vice versa?
1.) One way is easy: If $\mathrm{u}=c_{1} b_{1}+\cdots+c_{n} b_{n}$, then $[u]_{B}=\left[\begin{array}{c}c_{1} \\ \vdots \\ c_{n}\end{array}\right]$ in \mathbb{R}^{n}. Let $P_{B}=\left[b_{1}, b_{2}, \ldots, b_{n}\right]$ be the matrix whose columns are the b_{i} then the equation for u reads

$$
u=[u]_{E}=\left[b_{1}, b_{2}, \ldots, b_{n}\right][u]_{B}=P_{B}[u]_{B}
$$

Since the columns of P_{B} form a basis for $\mathbb{R}^{n}, P_{\mathrm{B}}$ is invertible by the Invertible Matrix Theorem.
2.) Now the other direction is clear, too. As

$$
u=[u]_{E}=P_{B}[u]_{B}
$$

we can multiply both sides of the equation by P_{B}^{-1}. We get

$$
P_{B}^{-1} u=P_{B}^{-1}[u]_{E}=P_{B}^{-1} P_{B}[u]_{B}=I_{n}[u]_{B}=[u]_{B}
$$

- Definition: P_{B} is called the change-of-coordinates matrix from B to the standard basis E in \mathbb{R}^{n}. Then for any u in \mathbb{R}^{n}

$$
u=[u]_{E}=P_{B}[u]_{B} \text { and }[u]_{B}=P_{B}^{-1}[u]_{E}=P_{B}^{-1} u
$$

and therefore P_{B}^{-1} is a change-of-coordinate matrix from E to B .

CHANGE OF BASIS IN \mathbb{R}^{n}

- Example: Let $\mathrm{B}=\left\{\mathrm{b}_{1}, \mathrm{~b}_{2}\right\}$, where $\mathrm{b}_{1}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$ and $\mathrm{b}_{2}=\left[\begin{array}{r}-1 \\ 1\end{array}\right]$.
1.) Consider the vector $u=3 \mathrm{~b}_{1}+4 \mathrm{~b}_{2}$. Write down $[u]_{\mathrm{B}}$, then calculate $u=[u]_{E}$
2.) Write down the coordinate-change-matrix P_{B} and then calculate P_{B}^{-1}
3.) Find the coordinate vector $[x]_{B}$ of x relative to B, for $x=\left[\begin{array}{l}4 \\ 5\end{array}\right]$

CHANGE OF BASIS IN \mathbb{R}^{n}

The \mathcal{B}-coordinate vector of \mathbf{x} is $(3,2)$.

- The matrix P_{B} changes the B-coordinates of a vector into the standard coordinates.

