
Math 22 –

Linear Algebra and its 

applications

- Lecture 16 -

Instructor: Bjoern Muetzel



GENERAL INFORMATION

▪ Office hours: Tu 1-3 pm, Th, Sun 2-4 pm in KH 229

▪ Tutorial: Tu, Th, Sun 7-9 pm in KH 105

▪ Homework 5: due next Wednesday at 4 pm outside KH 008. 

Please divide into the parts A, B, C and D and write your name 

on each part. 

▪ Project: Meeting next weekend!. 



4

4.4

Vector Spaces

COORDINATE SYSTEMS



▪ Summary:

1.) Using a basis we can define coordinates for a vector space V

2.) If V has n basis vectors then it is isomorphic to ℝ𝑛

3.) This means we can perform all calculations in ℝ𝒏 and then

translate back into V



GEOMETRIC INTERPRETATION
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COORDINATE MAPS

▪ Theorem 7 (Unique Representation Theorem):

Let B = {b1, …, bn}  be a basis for vector space V. Then for each 

x in V, there exists a unique set of scalars c1, …, cn such that

x=𝑐1𝑏1 +⋯+ 𝑐𝑛𝑏𝑛 (1)

▪ Proof: We have seen this in Lecture 15.

▪ Definition: Suppose B = {b1, …, bn} is a basis for V and x is in V. 

The coordinates of x relative to the basis B (or the B-coordinates 

of x) are the weights c1, …, cn such that   

x=𝑐1𝑏1 +⋯+ 𝑐𝑛𝑏𝑛.
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COORDINATE MAPS

▪ If c1, …, cn are the B-coordinates of x, then the vector in ℝ𝑛

𝑐1
⋮
𝑐𝑛

= [𝑥]𝐵= 𝑇𝐵(𝑥)

is the coordinate vector of x or the B-coordinate vector of x. 

▪ The mapping [ ∙ ]𝐵= 𝑇𝐵: 𝑉 → ℝ𝑛, x ↦ 𝑇𝐵 𝑥 = [𝑥]𝐵
is the coordinate mapping (determined by B).



COORDINATE MAPS

▪ Theorem 8: Let B = {b1, …, bn} be a basis for a vector space V. Then 

the coordinate mapping  

𝑇𝐵: 𝑉 → ℝ𝑛, x ↦ 𝑇𝐵 𝑥 = [𝑥]𝐵
is a linear transformation that is both one-to-one and onto. 

▪ Proof: Take two arbitrary vectors in V, say 

u = 𝑐1𝑏1 +⋯+ 𝑐𝑛𝑏𝑛
w = 𝑑1𝑏1 +⋯+ 𝑑𝑛𝑏𝑛

Then u + w =
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▪ It follows that

▪ Hence

1.) [ 𝑢 + 𝑤]𝐵= 𝑇𝐵 𝑢 + 𝑤 = 𝑇𝐵 u + 𝑇𝐵 v = [ 𝑢]𝐵+[ 𝑤]𝐵 .

So the coordinate mapping preserves addition.

▪ In a similar fashion for any 𝑎 in ℝ we have

2.)  [ 𝑐𝑢]𝐵= 𝑇𝐵 𝑐𝑢 = 𝑐𝑇𝐵 u = 𝑐[ 𝑢]𝐵.

But 1.) and  2.) imply that 𝑻𝑩 is a linear map. 

𝑇𝐵 is both one-to-one and onto by the Unique Representation 

Theorem.

     
1 1 1 1

u w u w

n n n n

c d c d

c d c d

+     
     + = = + = +
     

+          

B B B
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COORDINATE MAPS

▪ Note: The linearity of the coordinate mapping extends to linear 

combinations.

▪ If u1, …, up are in V and if c1, …, cp are scalars, then

▪ Definition: Let 𝑇: 𝑉 → 𝑊 be a linear transformation between vector 

spaces V and W. If T is both one to one and onto then T is called an 

isomorphism from V onto W. 

In this case we say that V is isomorphic to W and write  

𝑉 ≅ 𝑊.

 1 1 1 1
u ... u u ... u

p p p p
c c c c   + + = + +   BB B
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V ≅ℝ𝑛

Note: Using the coordinate map from Theorem 8 we see that if V has a 

basis of n vectors then V is isomorphic to ℝ𝑛. 

We will see in the following lecture that the number of basis vectors 

of V is an invariant. It is the dimension dim(V) of V. 

Hence any finite dimensional vector space is isomorphic to some ℝ𝒏.

Consequence:

We can use a coordinate map to map any finite dimensional vector 

space V to some ℝ𝑛. 

As the linearity of the coordinate map extends to linear combinations 

we can then perform all vector calculations in ℝ𝑛 and then translate our

result back to V.



V ≅ℝ𝑛

▪ Example: The matrices

𝐸1 =
1 0
0 0

, 𝐸2 =
0 1
0 0

, 𝐸3 =
0 0
1 0

, 𝐸4 =
0 0
0 1

form a standard basis E of the vector space of 2x2 matrices. Consider 

the matrices

𝐴 =
2 0
0 0

, 𝐵 =
−3 4
0 0

, C =
1 4
−2 2

, 𝐷 =
0 8
3 −1

.

1.) Write down [ 𝐴]𝐸, [ 𝐵]𝐸 , [ 𝐶]𝐸 and [ 𝐷]𝐸
2.)  Determine whether {A,B,C,D} is a linearly independent set.
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CHANGE OF BASIS IN ℝ𝑛

Given a concrete basis B = {b1, …, bn} for ℝ𝑛 and the usual standard 

basis E={e1, …, en}. 

How can we obtain the coordinate description of a vector in 

terms of B given in terms of E and vice versa?

1.) One way is easy: If u = 𝑐1𝑏1 +⋯+ 𝑐𝑛𝑏𝑛, then [𝑢]𝐵=

𝑐1
⋮
𝑐𝑛

in ℝ𝑛. 

Let 𝑃𝐵 = [𝑏1, 𝑏2,…, 𝑏𝑛] be the matrix whose columns are the bi

then the equation for u reads

𝑢 = [𝑢]𝐸= [𝑏1, 𝑏2,…, 𝑏𝑛] [𝑢]𝐵= 𝑃𝐵[𝑢]𝐵
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Since the columns of PB form a basis for ℝ𝑛, PB is invertible

by the Invertible Matrix Theorem.

2.) Now the other direction is clear, too. As

𝑢 = [𝑢]𝐸= 𝑃𝐵[𝑢]𝐵

we can multiply both sides of the equation by 𝑃𝐵
−1 . We get

𝑃𝐵
−1𝑢 = 𝑃𝐵

−1[𝑢]𝐸= 𝑃𝐵
−1𝑃𝐵[𝑢]𝐵 = 𝐼𝑛[𝑢]𝐵=[𝑢]𝐵.

▪ Definition: PB is called the change-of-coordinates matrix from B
to the standard basis E in ℝ𝑛. Then for any  u in ℝ𝑛

𝑢 = [𝑢]𝐸= 𝑃𝐵[𝑢]𝐵 and    [𝑢]𝐵= 𝑃𝐵
−1[𝑢]𝐸= 𝑃𝐵

−1𝑢

and therefore  𝑃𝐵
−1 is a change-of-coordinate matrix from E to B.



CHANGE OF BASIS IN ℝ𝑛

▪ Example: Let B ={b1, b2}, where               and                 . 

1.) Consider the vector u = 3b1 + 4b2. Write down [u]B , then 

calculate u= [u]E

2.) Write down the coordinate-change-matrix 𝑃𝐵 and then calculate 𝑃𝐵
−1

3.) Find the coordinate vector [x]B of x relative to B, for             

1

2
b

1

 
=  
 

2

1
b

1

− 
=  
 

4
x

5

 
=  
 
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CHANGE OF BASIS IN ℝ𝑛
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▪ The matrix 𝑃𝐵 changes the B-coordinates of a vector into the 
standard coordinates. 


