Math 22 -
Linear Algebra and its applications

- Lecture 15 -

Instructor: Bjoern Muetzel

GENERAL INFORMATION

- Office hours: Tu 1-3 pm, Th, Sun 2-4 pm in KH 229
- Tutorial: Tu, Th, Sun 7-9 pm in KH 105
- Homework 5: due next Wednesday at 4 pm outside KH 008. Please divide into the parts $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and \mathbf{D} and write your name on each part.

4

Vector Spaces

4.3

LINEAR INDEPENDENCEAND BASES

Linear Algebra AND ITS APPLICATIONS

 FIFTH EDITIONDavid C. Lay • Steven R. Lay • Judi J. McDonald

- Summary:
1.) A linearly independent spanning set is called a basis.
2.) We can find a basis by eliminating vectors from a Span or by using the row reduction algorithm.

GEOMETRIC INTERPRETATION

LINEAR INDEPENDENCE

- Definition: An indexed set of vectors $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ in \underline{V} is said to be linearly independent if the vector equation

$$
x_{1} \mathrm{v}_{1}+x_{2} \mathrm{v}_{2}+\ldots+x_{p} \mathrm{v}_{p}=0
$$

has only the trivial solution $\mathbf{x}_{1}=\mathbf{x}_{2}=\ldots=x_{p}=\mathbf{0}$.

Otherwise the set $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is said to be linearly dependent. This means that there exist weights c_{1}, \ldots, c_{p}, not all zero, such that

$$
c_{1} \mathrm{~V}_{1}+c_{2} \mathrm{~V}_{2}+\ldots+c_{p} \mathrm{~V}_{p}=0
$$

Equation (1) is called a linear dependence relation among $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ when the weights are not all zero.

- Theorem: The set of vectors $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ in \underline{V} is linearly independent if and only if any vector \mathbf{v} in $\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$
has a unique description as linear combination of the $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$.
- Proof:

BASES

As this is a very practical property we define :

Definition 1: Let $S=\left\{\mathrm{v}_{1}, \ldots, \mathrm{v}_{p}\right\}$ be a set of vectors in V.
Then a subset B of vectors of S is called a basis of $\operatorname{Span}\left\{\mathrm{v}_{1}, \ldots, \mathrm{v}_{p}\right\}$, if the vectors in B are linearly independent but still span $\operatorname{Span}\left\{\mathrm{v}_{1}, \ldots, \mathrm{v}_{p}\right\}$.

Definition 2: Let H be a subspace of a vector space V and $\mathrm{B}=\left\{\mathrm{b}_{1}, \ldots, \mathrm{~b}_{m}\right\}$ be a subset of H. Then B is a basis of H if
i.) B spans H, i.e. $\quad \operatorname{Span}\left\{\mathrm{b}_{1}, \ldots, \mathrm{~b}_{m}\right\}=H$
ii.) The vectors $\left\{\mathrm{b}_{1}, \ldots, \mathrm{~b}_{m}\right\}$ are linearly independent.

Note: This means that every vector in H can be expressed uniquely as a linear combination of vectors in B

- Example: Let $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$ be the columns of the $n \times n$ matrix, I_{n}.
- That is,

$$
\mathrm{e}_{1}=\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right], \mathrm{e}_{2}=\left[\begin{array}{c}
0 \\
1 \\
\vdots \\
0
\end{array}\right], \ldots, \mathrm{e}_{n}=\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
1
\end{array}\right]
$$

- The set $\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right\}$ is called the standard basis for \mathbb{R}^{n}.

The standard basis for \mathbb{R}^{3}.

BASES

Example: Find a simple basis for
1.) the set of 2×2 matrices
2.) the set of polynomials $\mathbf{P}_{3} \cong \mathbb{R}^{4}$ of degree smaller or equal to 3 .
3.) the set of polynomials $\mathbf{P}_{2} \cong \mathbb{R}^{3}$ of degree smaller or equal to 2 .
4.) Check if the polynomials $\mathrm{B}=\left\{1+x, x+x^{2}, x^{2}+1\right\}$ form a basis of \mathbf{P}_{2}.

HOW TO FIND A BASIS FOR A SPAN

We know:

- Theorem: (Characterization of Linearly Dependent Sets) An indexed set $S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ of two or more vectors in \underline{V} is linearly dependent if and only if at least one of the vectors in S is a linear combination of the others.

Proof: As in Lecture 6, Theorem 7.

Question: If $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is linearly dependent, can we remove a vector $\mathbf{v}_{\mathbf{j}}$ such that

$$
\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}=\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{\mathrm{j}-1}, \mathbf{v}_{\mathbf{j}+1}, \ldots, \mathbf{v}_{p}\right\} ?
$$

Solution: We can remove a vector $\mathbf{v}_{\mathbf{j}}$ that has a non-zero weight in the linear dependence relation.

Consequence: We can find a basis by successively removing vectors from a spanning set.

By the previous theorem the above solution is equal to
Theorem 5: (Spanning set theorem) Let $\mathrm{S}=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ be a set in V, and let $H=\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$. If \mathbf{v}_{j} is a linear combination of the remaining vectors in S, then the set formed from S by removing \mathbf{v}_{j} still spans H.

Proof: as in Lecture 6, Theorem 7. This proof can be directly translated into general vector spaces.

HOW TO FIND A BASIS FOR A SPAN

and $H=\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$. Note that $\mathbf{v}_{3}=5 \mathrm{v}_{1}+3 \mathrm{v}_{2}$.
1.) Show that $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}=\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$.
2.) Find a basis for the subspace H.

- Solution:

HOW TO FIND A BASIS FOR A SPAN

In the case where $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ are vectors in \mathbb{R}^{m}, we can immediately identify a basis using the row reduction algorithm:

Theorem: Let $S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ be a set of vectors in \mathbb{R}^{m} and let $A=\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right]$ be the matrix, whose columns are the $\mathbf{v}_{\mathbf{j}}$. Then the vectors which form the pivot columns of \mathbf{A} are form a basis of $\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$.

Proof:

BASES FOR NUL A AND COL A

Translating this theorem into matrix notation we get:

- Theorem 6: Let $\mathrm{T}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation and let A be the corresponding standard matrix. Then the \mathbf{p} pivot columns of \boldsymbol{A} form a basis for

$$
\mathrm{T}\left(\mathbb{R}^{n}\right)=\operatorname{Col} A=\left\{\mathrm{b} \text { in } \mathbb{R}^{m} \text {, s. t. } \mathrm{Ax}=\mathrm{b} \text { for some } \mathrm{x} \text { in } \mathbb{R}^{n}\right\} .
$$

- Warning: The pivot columns of a matrix A can only be read from the echelon form U of A. But be careful to use the pivot columns of \boldsymbol{A} itself for the basis of $\operatorname{Col} \boldsymbol{A}$.

BASES FOR NUL A AND COL A

We have seen in Lecture 14:

- Theorem: Let $\mathrm{T}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation and let A be the corresponding standard matrix. If

$$
\operatorname{Nul}(\mathrm{T})=\operatorname{Nul} A=\left\{\mathbf{x} \text { in } \mathbb{R}^{n}, \mathrm{Ax}=0\right\}
$$

contains nonzero vectors then a basis for $\operatorname{Nul} \boldsymbol{A}$ consist out of \mathbf{q} vectors, where \mathbf{q} equals the number of non-pivot columns of \mathbf{A}.
" Reminder: We can find Nul A explicitly by solving the homogeneous system of linear equations $\mathrm{Ax}=0$.

- Surprise:

BASIS OF COLAAND NULA

" Example:

1.) Find a basis for $\operatorname{Span}\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{5}\right\}$, where

$$
B=\left[\begin{array}{llll}
\mathrm{b}_{1} & \mathrm{~b}_{2} & \cdots & \mathrm{~b}_{5}
\end{array}\right]=\left[\begin{array}{rrrrr}
0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

2.) Find a basis for Nul B.

SUMMARY

- Two Views of a Basis
- When the Spanning Set Theorem is used, the deletion of vectors from a spanning set must stop when the set becomes linearly independent.
- If an additional vector is deleted, it will not be a linear combination of the remaining vectors, and hence the smaller set will no longer span V.
- View 1: A basis is a spanning set that is as small as possible.

View 2: A basis is also a linearly independent set that is as large as possible.

- If S is a basis for V, and if S is enlarged by one vector-say, wfrom V, then the new set cannot be linearly independent, because S spans V, and \mathbf{w} is therefore a linear combination of the elements in S.

