Math 22 – Linear Algebra and its applications

- Lecture 14 -

Instructor: Bjoern Muetzel

- **Office hours:** Tu 1-3 pm, **Th**, Sun **2-4 pm** in **KH 229**
- **Tutorial:** Tu, **Th**, Sun **7-9 pm** in **KH 105**
- Homework 4: due today at 4 pm outside KH 008. Please divide into the parts A, B, C and D and write your name on each part.

4.2

NULL SPACES, COLUMN SPACES AND LINEAR TRANSFORMATIONS

Summary:

- The kernel and the range of a linear transformation are subspaces and carry important information about the map itself.
- 2.) In matrix notation the kernel is called the null space and the range the column space.

GEOMETRIC INTERPRETATION

GEOMETRIC INTERPRETATION

LINEAR TRANSFORMATION

• **Definition:** A linear transformation from a vector space V into a vector space W is a rule that assigns to each vector \mathbf{x} in V a <u>unique</u> vector $T(\mathbf{x})$ in W, such that for all \mathbf{u} , \mathbf{v} in V and all scalars c in \mathbb{R} .

i.
$$T(u + v) = T(u) + T(v)$$

ii. $T(cu) = cT(u)$

- We write shortly: $T: V \to W, x \mapsto T(x)$.
- From **i.** and the vector space axioms it **follows** that iii. $T(\mathbf{0}) = \mathbf{0}$.

KERNELAND RANGE

Definition: Let T: V → W, x ↦ T(x) be a linear transformation.
1.) The kernel (or null space) Nul(T) of such a T is the set of all u in V such that T(u) = 0 in W.
2.) The range T(V) of T is the set of all vectors in W of the form T(x) for some x in V.

KERNELAND RANGE

Theorem: Let T: V → W, x ↦ T(x) be a linear transformation.
1.) The kernel Nul(T) is a subspace of <u>V</u>.
2.) The range T(V) is a subspace of <u>W</u>.

Proof:

KERNEL AND RANGE

Any matrix A is the standard matrix of a linear transformation T. Hence we can <u>translate</u> the definition of the kernel or null space into <u>matrix notation</u>:

Definition: The null space of an $m \times n$ matrix A, written as Nul A, is the set of all solutions of the homogeneous equation Ax = 0:

Nul $A = \{x \text{ in } \mathbb{R}^n, \text{ such that } Ax = 0\}.$

Theorem 2: The null space of an $m \times n$ matrix A is a subspace of \mathbb{R}^n . It is the set of all solutions to the system Ax = 0.

Proof: There is nothing to prove as this follows from the general case.

Note: (Implicit description of Nul A)

We say that Nul *A* is defined **implicitly**, because it is defined by a condition that must be checked.

Nul A is the set of solutions of the equation Ax = 0. This gives an explicit description of Nul A.

Example: Find a spanning set for the null space of the matrix Ax = 0

$$A = \begin{bmatrix} -3 & 6 & -1 & 1 & -7 \\ 1 & -2 & 2 & 3 & -1 \\ 2 & -4 & 5 & 8 & -4 \end{bmatrix}$$

- The general solution is $x_1 = 2x_2 + x_4 3x_5$, $x_3 = -2x_4 + 2x_5$ with x_2 , x_4 , and x_5 free.
- Transforming this into a parametric description we get:

- Every linear combination of **u**, **v**, and **w** is an element of Nul *A*.
- Thus $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is a spanning set for Nul A.
 - 1. The spanning set produced by this method is **automatically linearly independent** because for each free variable we get a row with only one 1 and otherwise 0s. Each time at a different position.
 - 2. When Nul *A* contains nonzero vectors, the **number of** vectors in the spanning set for Nul *A* equals the **number of** free variables in the equation Ax = 0.

COLUMN SPACE OF A MATRIX

<u>Translating</u> the definition of the range into <u>matrix notation</u>, we get:

Definition: The column space Col A of an m × n matrix A, is the set of all linear combinations of the columns of A.
 If A = [a₁, a₂, ..., a_n], then
 Col A = Span{a₁, a₂, ..., a_n} or
 Col A = {b in R^m, where b = Ax for some x in Rⁿ}.

Theorem 3: The column space of an $m \times n$ matrix A is a subspace of \mathbb{R}^m . It is the **range** of the linear transformation $T: x \mapsto T(x) = Ax$.

Proof: $A = [T(e_1), T(e_2), ..., T(e_n)]$ is the standard matrix of a linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$, $Col \ A = T(\mathbb{R}^n)$. We have already proven the more general case.

COLUMN SPACE OF A MATRIX

Example: Let
$$A = \begin{bmatrix} 2 & 4 & -2 & 1 \\ -2 & -5 & 7 & 3 \\ 3 & 7 & -8 & 6 \end{bmatrix}$$
, $u = \begin{bmatrix} 3 \\ -2 \\ -1 \\ 0 \end{bmatrix}$ and $v = \begin{bmatrix} 3 \\ -1 \\ 3 \end{bmatrix}$.

1.) Determine if u is in Nul A. Could u be in Col A?2.) Determine if v is in Col A. Could v be in Nul A?

COLUMN SPACE OF A MATRIX