Math 22 -
Linear Algebra and its applications

- Lecture 14 -

Instructor: Bjoern Muetzel

GENERAL INFORMATION

- Office hours: Tu 1-3 pm, Th, Sun 2-4 pm in KH 229
- Tutorial: Tu, Th, Sun 7-9 pm in KH 105
- Homework 4: due today at $\mathbf{4} \mathbf{~ p m}$ outside KH 008. Please divide into the parts $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and \mathbf{D} and write your name on each part.

4

Vector Spaces

4.2

NULL SPACES, COLUMN SPACES AND LINEAR TRANSFORMATIONS

Linear Algebra AND ITS APPLICATIONS
 FIFTH EDITION
 David C. Lay • Steven R. Lay • Judi J. McDonald

Summary:

1.) The kernel and the range of a linear transformation are subspaces and carry important information about the map itself.
2.) In matrix notation the kernel is called the null space and the range the column space.

GEOMETRIC INTERPRETATION

GEOMETRIC INTERPRETATION

LINEAR TRANSFORMATION

Definition: A linear transformation from a vector space V into a vector space W is a rule that assigns to each vector \mathbf{x} in V a unique vector $T(\mathbf{x})$ in W, such that for all \mathbf{u}, \mathbf{v} in V and all scalars c in \mathbb{R}.
i. $\quad T(u+v)=T(u)+T(v)$
ii. $\quad T(c u)=c T(u)$

We write shortly: $\quad T: V \rightarrow W, x \mapsto T(x)$.

From i. and the vector space axioms it follows that
iii. $\quad T(\mathbf{0})=\mathbf{0}$.

KERNELAND RANGE

- Definition: Let $T: V \rightarrow W, x \mapsto T(x)$ be a linear transformation.
1.) The kernel (or null space) $\operatorname{Nul}(T)$ of such a T is the set of all \mathbf{u} in V such that $T(u)=\mathbf{0}$ in W .
2.) The range $T(V)$ of T is the set of all vectors in W of the form $T(\mathbf{x})$ for some \mathbf{x} in V.

KERNELAND RANGE

- Theorem: Let $T: V \rightarrow W, x \mapsto T(x)$ be a linear transformation.
1.) The kernel $\operatorname{Nul}(T)$ is a subspace of \underline{V}.
2.) The range $T(V)$ is a subspace of \underline{W}.

Proof:

KERNELAND RANGE

NULL SPACE OF A MATRIX

Any matrix A is the standard matrix of a linear transformation T.
Hence we can translate the definition of the kernel or null space into matrix notation:

Definition: The null space of an $m \times n$ matrix A, written as $\operatorname{Nul} A$, is the set of all solutions of the homogeneous equation $A x=0$:

$$
N u l A=\left\{x \text { in } \mathbb{R}^{n}, \text { such that } A x=0\right\} .
$$

Theorem 2: The null space of an $m \times n$ matrix A is a subspace of \mathbb{R}^{n}. It is the set of all solutions to the system $\boldsymbol{A x}=\mathbf{0}$.

Proof: There is nothing to prove as this follows from the general case.

NULL SPACE OF A MATRIX

Note: (Implicit description of Nul A)
We say that $\mathrm{Nul} A$ is defined implicitly, because it is defined by a condition that must be checked.

- Nul \mathbf{A} is the set of solutions of the equation $A x=0$. This gives an explicit description of $\operatorname{Nul} A$.

NULL SPACE OF A MATRIX

Example: Find a spanning set for the null space of the matrix $A x=0$

$$
A=\left[\begin{array}{rrrrr}
-3 & 6 & -1 & 1 & -7 \\
1 & -2 & 2 & 3 & -1 \\
2 & -4 & 5 & 8 & -4
\end{array}\right]
$$

NULL SPACE OF A MATRIX

- The general solution is $x_{1}=2 x_{2}+x_{4}-3 x_{5}, x_{3}=-2 x_{4}+2 x_{5}$ with x_{2}, x_{4}, and x_{5} free.
- Transforming this into a parametric description we get:

NULL SPACE OF A MATRIX

Every linear combination of \mathbf{u}, \mathbf{v}, and \mathbf{w} is an element of $\mathrm{Nul} A$. Thus $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is a spanning set for $\operatorname{Nul} A$.

1. The spanning set produced by this method is automatically linearly independent because for each free variable we get a row with only one 1 and otherwise 0s. Each time at a different position.
2. When Nul A contains nonzero vectors, the number of vectors in the spanning set for $\mathrm{Nul} A$ equals the number of free variables in the equation $A x=0$.

COLUMN SPACE OF A MATRIX

Translating the definition of the range into matrix notation, we get:

- Definition: The column space $\operatorname{Col} A$ of an $m \times n$ matrix A, is the set of all linear combinations of the columns of A.
If $A=\left[a_{1}, a_{2}, \ldots, a_{n}\right]$, then

$$
\operatorname{Col} A=\operatorname{Span}\left\{\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{n}\right\} \quad \text { or }
$$

$$
\operatorname{Col} A=\left\{b \text { in } \mathbb{R}^{m}, \text { where } b=A x \text { for some } x \text { in } \mathbb{R}^{n}\right\}
$$

Theorem 3: The column space of an $m \times n$ matrix A is a subspace of \mathbb{R}^{m}. It is the range of the linear transformation $T: x \mapsto T(x)=A x$.

Proof: $A=\left[T\left(e_{1}\right), T\left(e_{2}\right), \ldots, T\left(e_{n}\right)\right]$ is the standard matrix of a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, \operatorname{Col} A=T\left(\mathbb{R}^{n}\right)$. We have already proven the more general case.

COLUMN SPACE OF A MATRIX

Example: Let $A=\left[\begin{array}{rrrr}2 & 4 & -2 & 1 \\ -2 & -5 & 7 & 3 \\ 3 & 7 & -8 & 6\end{array}\right], \mathrm{u}=\left[\begin{array}{r}3 \\ -2 \\ -1 \\ 0\end{array}\right]$ and $\mathrm{v}=\left[\begin{array}{r}3 \\ -1 \\ 3\end{array}\right]$.
1.) Determine if \mathbf{u} is in $\operatorname{Nul} A$. Could \mathbf{u} be in $\operatorname{Col} A$?
2.) Determine if \mathbf{v} is in $\operatorname{Col} A$. Could \mathbf{v} be in $\operatorname{Nul} A$?

COLUMN SPACE OF A MATRIX

