Math 22 -
Linear Algebra and its applications

- Lecture 12 -

Instructor: Bjoern Muetzel

GENERAL INFORMATION

- Office hours: Tu 1-3 pm, Th, Sun 2-4 pm in KH 229
- Tutorial: Tu, Th, Sun 7-9 pm in KH 105
- Homework 4: due Wednesday at $\mathbf{4} \mathbf{~ p m}$ outside KH 008. Please divide into the parts $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and \mathbf{D} and write your name on each part.

3

DETERMINANTS

3.1

DETERMINANTS AND THEIR PROPERTIES

Linear Algebra AND ITS APPLICATIONS
 fifth edition

David C. Lay • Steven R. Lay • Judi J. McDonald

- Summary:
1.) The determinant measures how much the linear map transforms the volume of an object.
2.) There are different ways to calculate the determinant. One is to use the row reduction algorithm.

GEOMETRIC INTERPRETATION

GEOMETRIC INTERPRETATION

DETERMINANTS

- Definition: Let $A=\left[a_{\mathrm{ij}}\right]$ be an $n \times n$ matrix. We call $\boldsymbol{A}_{\boldsymbol{i j}}$ the $n-1 \times n-1$ submatrix which we obtain by deleting the i-th row and \mathbf{j}-th column.

$$
\begin{gathered}
A=\left[\begin{array}{cccc}
a_{1,1} & a_{1,2} & \ldots & a_{1, n} \\
a_{2,1} & a_{2,2} & \ldots & a_{2, n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n, 1} & a_{n, 2} & \ldots & a_{n, n}
\end{array}\right] \\
\boldsymbol{A}_{\mathbf{2 1}}=\left[\begin{array}{cccc}
& a_{1,2} & \ldots & a_{1, n} \\
& \vdots & \ddots & \vdots \\
& a_{n, 2} & \ldots & a_{n, n}
\end{array}\right]
\end{gathered}
$$

DETERMINANTS

- Definition: For $n \geq 2$, the determinant of an $n \times n$ matrix $A=\left[a_{\mathrm{ij}}\right]$ is the sum of n terms of the form $\pm a_{1 j} \operatorname{det} A_{1 j}$, with plus and minus signs alternating, where the entries $\mathrm{a}_{11}, \mathrm{a}_{12}, \ldots, \mathrm{a}_{1 \mathrm{n}}$ are from the first row of A. In symbols,

$$
\begin{aligned}
\operatorname{det} A & =a_{11} \operatorname{det} A_{11}-a_{12} \operatorname{det} A_{12}+\cdots+(-1)^{1+n} a_{1 n} \operatorname{det} A_{1 n} \\
& =\sum_{j=1}^{n}(-1)^{1+j} a_{1 j} \operatorname{det} A_{1 j}
\end{aligned}
$$

We can expand the definition to any square matrix by setting $\operatorname{det}(\mathbf{a})=\mathbf{a}$ for a $1 x 1$ matrix, which is simply an entry.

In two dimensions this reduces to the usual formula.

DETERMINANTS

Example: Compute the determinant of $A=\left[\begin{array}{ccc}1 & 5 & 0 \\ 2 & 4 & -1 \\ 0 & -2 & 0\end{array}\right]$.

DETERMINANTS

- Defintion: Given $A=\left[\mathrm{a}_{\mathrm{ij}}\right]$, the $(\boldsymbol{i}, \boldsymbol{j})$-cofactor of A is the number C_{ij} given by

$$
C_{i j}=(-1)^{i+j} \operatorname{det} A_{i j}
$$

The sign of the cofactor can be read from the sign matrix:

$$
\left[\begin{array}{cccc}
+ & - & + & \cdots \\
- & + & - & \\
+ & - & + & \\
\vdots & & & \ddots
\end{array}\right] \quad \boldsymbol{A}_{\mathbf{2 1}}=\left[\begin{array}{cccc}
& a_{1,2} & \ldots & a_{1, n} \\
\square & & & \\
& \vdots & \ddots & \vdots \\
& a_{n, 2} & \cdots & a_{n, n}
\end{array}\right] .
$$

Example:

$$
C_{21}=(-1)^{2+1} \operatorname{det} A_{21}
$$

DETERMINANTS

Theorem: (Cofactor expansion)

The determinant of an $n \times n$ matrix A can be computed by a cofactor across any row or down any column.

The expansion across the \boldsymbol{i}-th row using cofactors is

$$
\operatorname{det} A=a i_{1} C_{i 1}+a i_{2} C_{i 2}+\cdots+a_{i n} C_{i n}
$$

The expansion down the j-th column is

$$
\operatorname{det} A=a_{1 j} C_{1 j}+a_{2 j} C_{2 j}+\cdots+a_{n j} C_{n j}
$$

DETERMINANTS

Example: Use a cofactor expansion down the third column to compute $\operatorname{det} A$, where

$$
A=\left[\begin{array}{ccc}
1 & 5 & 0 \\
2 & 4 & -1 \\
0 & -2 & 0
\end{array}\right]
$$

PROPERTIES OF DETERMINANTS

- Theorem 1: If A and B are $n \times n$ matrices, then

$$
\operatorname{det} A B=(\operatorname{det} A)(\operatorname{det} B) .
$$

- Idea: The determinant measures the volume deformation.
- Theorem 2: If A is a triangular matrix, then $\operatorname{det} A$ is the product of the entries on the main diagonal of A.
- Proof: Cofactor expansion by the first column.
- Theorem 3: Let A be a square matrix.
a) If a multiple of one row of A is added to another row to produce a matrix B, then

$$
\operatorname{det} B=\operatorname{det} A
$$

b) If two rows of A are interchanged to produce B, then

$$
\operatorname{det} B=-\operatorname{det} \boldsymbol{A} \quad \text { or } \quad \operatorname{det} \boldsymbol{A}=-\operatorname{det} \boldsymbol{B} .
$$

c) If one row of A is multiplied by k to produce B , then

$$
\operatorname{det} B=k \cdot \operatorname{det} A \text { or } \operatorname{det} A=\frac{1}{k} \cdot \operatorname{det} B
$$

PROPERTIES OF DETERMINANTS

- Example: Compute $\operatorname{det} A$, where $A=\left[\begin{array}{ccc}1 & -4 & 2 \\ -2 & 8 & -9 \\ -1 & 7 & 0\end{array}\right]$
using row reduction and Theorem 2 and Theorem 3.

Solution:

PROPERTIES OF DETERMINANTS

- Theorem 4: A square matrix A is invertible if and only if $\operatorname{det} A \neq 0$.
- Proof:

PROPERTIES OF DETERMINANTS

- Example: Show that $\operatorname{det} \mathbf{A}=\mathbf{0}$, where $A=\left[\begin{array}{cccc}3 & -1 & 2 & -5 \\ 0 & 5 & -3 & -6 \\ -6 & 7 & -7 & 4 \\ -5 & -8 & 0 & 9\end{array}\right]$
- Solution:

DETERMINANT OF THE TRANSPOSED MATRIX

- Theorem 5: If A is a $n \times n$ matrix, then

$$
\operatorname{det} A^{\mathrm{T}}=\operatorname{det} A \text {. }
$$

- Proof:

DETERMINANT OF THE TRANSPOSED MATRIX

Example: Verify proof 1.) for Theorem $\mathbf{5}$ for $\mathrm{A}=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$

DETERMINANT - EXAMPLES

- Examples:

