Math 22 -
Linear Algebra and its applications

- Lecture 11 -

Instructor: Bjoern Muetzel

GENERAL INFORMATION

- Office hours: Tu 1-3 pm, Th, Sun 2-4 pm in KH 229
- Tutorial: Tu, Th, Sun 7-9 pm in KH 105
- Homework 3: due Wednesday at $\mathbf{4}$ pm outside KH 008. Please divide into the parts $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and \mathbf{D} and write your name on each part.
- Saturday / Sunday: Group meetings for the project

2

Matrix Algebra

2.3

CHARACTERIZATIONS OF INVERTIBLE MATRICES

Linear Algebra
 AND ITS APPLICATIONS fifth edition

David C. Lay • Steven R. Lay • Judi J. McDonald

- Summary:

1.) If a linear transformation is invertible then we can undo its effect on the space using the inverse transformation.
2.) The inverse matrix theorem unites the different viewpoints of a transformation that is both one-to-one and onto.

GEOMETRIC INTERPRETATION

INVERTIBLE LINEAR TRANSFORMATIONS

- Definition:A linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is said to be invertible if there exists a function $S: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that

$$
\begin{array}{ll}
S(T(x))=x & \text { for all } \mathbf{x} \text { in } \mathbb{R}^{n} \\
T(S(x))=x & \text { for all } \mathbf{x} \text { in } \mathbb{R}^{n} \tag{2}
\end{array}
$$

INVERTIBLE LINEAR TRANSFORMATIONS

- Theorem 9: Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear transformation and let A be the standard matrix for T. Then T is invertible if and only if A is an invertible matrix. In that case, the inverse linear transformation S given by $S(x)=A^{-1} x$.

Multiplication

A^{-1} transforms $A \mathbf{x}$ back to \mathbf{x}.

THE INVERTIBLE MATRIX THEOREM

- Theorem 8: Let A be a square $\boldsymbol{n} \times \boldsymbol{n}$ matrix. Then the following statements are equivalent. That is, for a given A, the statements are either all true or all false.
a. $\quad A$ is an invertible matrix.
b. $\quad A$ is row equivalent to the $n \times n$ identity matrix.
c. A has n pivot positions.
d. The equation $A x=0$ has only the trivial solution.
f. The columns of A form a linearly independent set. The linear transformation $x \rightarrow A x$ is one-to-one.
g. The equation $A x=b$ has at least one solution for each b in \mathbb{R}^{n}.
h. The columns of A span \mathbb{R}^{n}.
i. The linear transformation $x \rightarrow A x$ maps \mathbb{R}^{n} onto \mathbb{R}^{n}.
j. There is an $n \times n$ matrix C such that $C A=I_{n}$.
k. There is an $n \times n$ matrix D such that $A D=I_{n}$.

1. $\quad A^{T}$ is an invertible matrix.

THE INVERTIBLE MATRIX THEOREM

THE INVERTIBLE MATRIX THEOREM

- Theorem 8 could also be written as
"The equation $A x=b$ has a unique solution for each \mathbf{b} in \mathbb{R}^{n}."
- Consequence: Let A and B be square matrices. If $A B=I_{n}$, then A and B are both invertible, with $B=A^{-1}$ and $A=B^{-1}$.
- The Invertible Matrix Theorem divides the set of all $n \times n$ matrices into two disjoint classes:
1.) the invertible or nonsingular matrices, and
2.) the noninvertible or singular matrices.

THE INVERTIBLE MATRIX THEOREM

- Each statement of Theorem 8 describes a property of every $n \times n$ invertible matrix.
- The negation of a statement in the theorem describes a property of every $n \times n$ singular matrix.
- Example: An $n \times n$ singular matrix is not row equivalent to I_{n}, does not have n pivot position, and has linearly dependent columns.

THE INVERTIBLE MATRIX THEOREM

- Example: Use the Invertible Matrix Theorem to decide if A is invertible:

$$
A=\left[\begin{array}{rrr}
1 & 0 & -2 \\
3 & 1 & -2 \\
-5 & -1 & 9
\end{array}\right]
$$

- Solution:

