Math 22 – Linear Algebra and its applications

- Lecture 11 -

Instructor: Bjoern Muetzel

- **Office hours:** Tu 1-3 pm, **Th**, Sun 2-4 pm in KH 229
- **Tutorial:** Tu, **Th**, Sun **7-9 pm** in KH 105
- Homework 3: due Wednesday at 4 pm outside KH 008. Please divide into the parts A, B, C and D and write your name on each part.
- <u>Saturday / Sunday:</u> Group meetings for the project

2.3

CHARACTERIZATIONS OF INVERTIBLE MATRICES

FIFTH EDITION

David C. Lay • Steven R. Lay • Judi J. McDonald

• <u>Summary</u>:

If a linear transformation is invertible then we can undo its effect on the space using the inverse transformation. The inverse matrix theorem unites the different viewpoints of a transformation that is both one-to-one and onto.

GEOMETRIC INTERPRETATION

INVERTIBLE LINEAR TRANSFORMATIONS

• <u>Definition</u>: A linear transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ is said to be **invertible** if there exists a function $S: \mathbb{R}^n \to \mathbb{R}^n$ such that

$$S(T(x)) = x \text{ for all } \mathbf{x} \text{ in } \mathbb{R}^n$$
(1)

$$T(S(x)) = x \text{ for all } \mathbf{x} \text{ in } \mathbb{R}^n$$
(2)

INVERTIBLE LINEAR TRANSFORMATIONS

Theorem 9: Let T: ℝⁿ → ℝⁿ be a linear transformation and let A be the standard matrix for T. Then T is invertible if and only if A is an invertible matrix. In that case, the inverse linear transformation S given by S(x) = A⁻¹x.

 A^{-1} transforms $A\mathbf{x}$ back to \mathbf{x} .

- Theorem 8: Let A be a square n × n matrix. Then the following statements are equivalent. That is, for a given A, the statements are either all true or all false.
 - a. *A* is an invertible matrix.
 - b. A is row equivalent to the $n \times n$ identity matrix.
 - c. *A* has *n* pivot positions.
 - d. The equation Ax = 0 has only the trivial solution.
 - f. The columns of A form a linearly independent set. The linear transformation $x \rightarrow Ax$ is one-to-one.
 - g. The equation Ax = b has at least one solution for each b in \mathbb{R}^n .
 - h. The columns of A span \mathbb{R}^n .
 - i. The linear transformation $x \to Ax$ maps \mathbb{R}^n onto \mathbb{R}^n .
 - j. There is an $n \times n$ matrix C such that $CA = I_n$.
 - k. There is an $n \times n$ matrix D such that $AD = I_n$.
 - 1. A^T is an invertible matrix.

- Theorem 8 could also be written as "The equation Ax = b has a *unique* solution for each **b** in \mathbb{R}^n ."
- <u>Consequence</u>: Let *A* and *B* be square matrices. If $AB = I_n$, then *A* and *B* are both invertible, with $B = A^{-1}$ and $A = B^{-1}$.
- The Invertible Matrix Theorem divides the set of all n × n matrices into two disjoint classes:

1.) the invertible or nonsingular matrices, and2.) the noninvertible or singular matrices.

- Each statement of **Theorem 8** describes a property of every $n \times n$ invertible matrix.
- The *negation* of a statement in the theorem describes a property of every $n \times n$ singular matrix.
- Example: An n × n singular matrix is not row equivalent to I_n, does not have n pivot position, and has linearly dependent columns.

Example: Use the Invertible Matrix Theorem to decide if A is invertible:

$$A = \begin{bmatrix} 1 & 0 & -2 \\ 3 & 1 & -2 \\ -5 & -1 & 9 \end{bmatrix}$$

