Math 22 -
Linear Algebra and its applications

- Lecture 10 -

Instructor: Bjoern Muetzel

GENERAL INFORMATION

- Office hours: Tu 1-3 pm, Th, Sun 2-4 pm in KH 229
- Tutorial: Tu, Th, Sun 7-9 pm in KH 105
- Homework 3: due Wednesday at $\mathbf{4} \mathbf{~ p m}$ outside KH 008. Please divide into the parts $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and \mathbf{D} and write your name on each part.
- Midterm 1: today Oct 7 from 4-6 pm in Carpenter 013

2

Matrix Algebra

2.2

THE INVERSE OF A MATRIX

Summary:

1.) An $\boldsymbol{n} \times \boldsymbol{n}$ matrix has an inverse if and only if the corresponding linear transformation is both one-to-one and onto.
2.) We can find the inverse of a matrix using the row reduction algorithm.

INVERSE OF A MATRIX

- Definition 1: An $n \times n$ matrix A is said to be invertible if there is an $n \times n$ matrix C such that

$$
A C=I_{n}=C A
$$

In this case, C is called the inverse of A and we write $\boldsymbol{C}=\boldsymbol{A}^{\mathbf{- 1}}$.

- Geometric interpretation: If \mathbf{x} in \mathbb{R}^{n} is a vector and

$$
S(\mathbf{x})=A \mathbf{x} \text { and } T(\mathbf{x})=C \mathbf{x}
$$

are the corresponding linear transformations, this means that

$$
S \circ T(\mathbf{x})=A(C \mathbf{x})=(A C) \mathbf{x}=I_{n} \mathbf{x}=\mathbf{x} \quad \text { and } T \circ S(\mathbf{x})=\mathbf{x}
$$

This means that S "undoes" the effect of T and vice versa.

Examples: What is the inverse of a rotation, shear and reflection?
Does a projection have an inverse?

INVERSE OF A MATRIX

- Theorem $\mathbf{4}$ (Inverse of a $\mathbf{2 \times 2}$ matrix) Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. If $a d-b c \neq 0$, then A is invertible and

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right] .
$$

If $a d-b c=0$, then A is not invertible.

- The quantity $\operatorname{det}(\boldsymbol{A})=a d-b c$ is called the determinant of A.
- This theorem says that a 2×2 matrix A is invertible if and only if $\operatorname{det}(A) \neq 0$.
- Proof (for $\operatorname{det}(\mathbf{A})):$ Bring A into echelon form and check.

Examples:

INVERSE OF A MATRIX

- Theorem 5*: Let A be an $n \times n$ matrix.
1.) If A is invertible then for each \mathbf{b} in \mathbb{R}^{n}, the equation $A x=b$ has the unique solution $x=A^{-1} b$.
2.) If for each \mathbf{b} in \mathbb{R}^{n}, the equation $A x=b$ has a unique solution, then A is invertible.
- Proof: 1.) Let A be an invertible matrix.

Theorem: Let A be an $n \times n$ matrix, then A is invertible if and only if
1.) For each \mathbf{b} in \mathbb{R}^{n}, the equation $A x=b$ has the unique solution $x=A^{-1} b$.
2.) The corresponding linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is both one-to-one and onto.
3.) A has a pivot in every row and in every column.

INVERSE OF A MATRIX

Theorem 6: a. If A is an invertible matrix, then A^{-1} is invertible and

$$
\left(A^{-1}\right)^{-1}=A
$$

b. If A and B are $n \times n$ invertible matrices, then so is $A B$, and its inverse is

$$
(A B)^{-1}=B^{-1} A^{-1}
$$

c. If A is an invertible matrix, then so is A^{T}, and the inverse of A^{T} is

$$
\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}
$$

Proof:

MATRIX INVERSION - ALGORITHM

Summary: We can find the inverse of a matrix using the row reduction algorithm.

MATRIX INVERSION - ALGORITHM

- Theorem 7: An $n \times n$ matrix A is invertible if and only if A is row equivalent to I_{n}, shortly $\boldsymbol{A} \sim \boldsymbol{I}_{\boldsymbol{n}}$.
In this case we obtain A^{-1} by applying the row reduction algorithm to the matrix $\left[A, I_{n}\right]$ which transforms into $\left[I_{n}, A^{-1}\right]$.
- Proof: 1.) Suppose that A is invertible.

We have seen that Theorem 5*.1.) implies that A has a pivot position in every row and column.

This implies that the pivot positions must be on the diagonal, and the reduced echelon form of \boldsymbol{A} is $\boldsymbol{I}_{\boldsymbol{n}}$. Hence $A \sim I_{n}$.
2.) Suppose that $A \sim I_{n}$,i.e A can be row reduced to I_{n}.

Idea: Calculate A^{-1} :
Hence the equation $A x=b$ has a unique solution for each \mathbf{b} in \mathbb{R}^{n}.
Let $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ in \mathbb{R}^{n} be the standard basis of \mathbb{R}^{n}.
As a solution exists we can solve the following equations:

$$
A y_{1}=e_{1}, A y_{2}=e_{2}, \ldots, A y_{n}=e_{n}
$$

But this implies for the matrix $B=\left[y_{1}, y_{2}, \ldots, y_{n}\right]$ that

$$
\begin{equation*}
A B=\left[e_{1}, e_{2}, \ldots, e_{n}\right]=I_{n} \tag{1}
\end{equation*}
$$

The row reduction algorithm to solve the equation $A y_{k}=e_{k}$ depends only on A and not on e_{k}. Hence we can find the solutions simultaneously, applying the algorithm to the matrix

$$
\left[A, I_{n}\right]
$$

MATRIX INVERSION - ALGORITHM

This matrix reduces to $\left[I_{n}, C\right]$. But translating this back into a system of linear equations we get $\left[y_{1}, y_{2}, \ldots, y_{n}\right]=C$.

Hence $\mathrm{C}=\left[y_{1}, y_{2}, \ldots, y_{n}\right]=B$ and $\left[A, I_{n}\right]$ row reduces to $\left[I_{n}, B\right]$. This implies that $\left[A, I_{n}\right] \sim\left[I_{n}, B\right] \quad(\sim$ means row equivalent $)$.

The row reduction algorithm does not depend on the relative position of A and I_{n}. Applying the same steps we get $\left[I_{n}, A\right] \sim\left[B, I_{n}\right]$.

Applying the inverse steps of the row reduction backwards we can transform $\left[B, I_{n}\right]$ into $\left[I_{n}, A\right]$. But this means that $\mathrm{A} B=I_{n}$. With (1) we get

$$
\mathrm{BA}=\mathrm{A} B=I_{n} \quad \text { and } \quad \mathbf{B}=\boldsymbol{A}^{-\mathbf{1}} .
$$

MATRIX INVERSION - ALGORITHM

- Example: Find the inverse of the matrix $A=\left[\begin{array}{ccc}0 & 1 & 2 \\ 1 & 0 & 3 \\ 4 & -3 & 8\end{array}\right]$, if it exists.
- Solution:

MATRIX INVERSION - ALGORITHM

MATRIX INVERSIOIN - ALGORITHM

- Theorem 7 shows, since $A \sim I_{3}$, that A is invertible, and

$$
A^{-1}=\left[\begin{array}{ccc}
-9 / 2 & 7 & -3 / 2 \\
-2 & 4 & -1 \\
3 / 2 & -2 & 1 / 2
\end{array}\right]
$$

- Now, check the final answer.

$$
A A^{-1}=\left[\begin{array}{ccc}
0 & 1 & 2 \\
1 & 0 & 3 \\
4 & -3 & 8
\end{array}\right]\left[\begin{array}{ccc}
-9 / 2 & 7 & -3 / 2 \\
-2 & 4 & -1 \\
3 / 2 & -2 & 1 / 2
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

ELEMENTARY MATRICES

- Definition: An elementary matrix is one that is obtained by performing a single elementary row operation on an identity matrix.
- Example: $E_{1}=\left[\begin{array}{rrr}1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1\end{array}\right], E_{2}=\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right], E_{3}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 5\end{array}\right]$
1.) Compute $E_{1} A, E_{2} A$, and $E_{3} A$, where $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3\end{array}\right]$.
2.) Describe the effect of these multiplications on A.
3.) Find the inverse matrices of E_{1}, E_{2}, and E_{3}.

ELEMENTARY MATRICES

ELEMENTARY MATRICES

Summary:

- If an elementary row operation is performed on an $m \times n$ matrix A, the resulting matrix can be written as $E A$, where the $m \times m$ matrix E is created by performing the same row operation on I_{m}.
- Each elementary matrix E is invertible. The inverse of E is the elementary matrix of the same type that transforms E back into I_{m}.

ELEMENTARY MATRICES

- Summary

- Applying this to the problem of finding the inverse matrix we get:
- Each step of the row reduction of A corresponds to leftmultiplication by an elementary matrix, there exist elementary matrices E_{1}, \ldots, E_{p} such that

$$
A \sim E_{1} A \sim E_{2}\left(E_{1} A\right) \sim \ldots \sim E_{p}\left(E_{p-1} \ldots E_{1} A\right)=I_{n}
$$

That is, $E_{p} \ldots E_{1} A=I_{n}$.

Since the product $E_{p} \ldots E_{1}$ of invertible matrices is invertible, this leads to

$$
\begin{aligned}
\left(E_{p} \ldots E_{1}\right)^{-1}\left(E_{p} \ldots E_{1}\right) A & =\left(E_{p} \ldots E_{1}\right)^{-1} I_{n} \text { or } \\
A & =\left(E_{p} \ldots E_{1}\right)^{-1}
\end{aligned}
$$

Hence A is invertible and $A^{-1}=\left[\left(E_{p} \ldots E_{1}\right)^{-1}\right]^{-1}=E_{p} \ldots E_{1}$.

