Modeling New Hampshire ISO-NE 24-Hour Real-Time Power Prices Based on Seasonal Data

Rick Basak, Hayden Campos, Wesley Heim, Brook Leigh, Matthew Pickering, Lucas Tsuge

Background

- Power prices are for electricity market
- 3 main zones in United States
- New Hampshire market is partly regulated
 - We focus on regulated ISO-NE Market
- Data used prices on a 24-hour Real-Time Basis
 - Average prices throughout day
 - Prices based on Real-Time Usage

Expectations in Pricing Trends

- Summer and winter will be highest
 - Heating usage during cold New Hampshire winters
 - A/C usage during hot New Hampshire summers
- Outliers exist especially during holidays
- General daily trends involve:
 - Extensive usage during morning and late-afternoon

Graph Approximation Equation

 $Y = A + B^*sin(x) + C^*cos(x) + D^*sin(2x) + E^*cos(2x)$

MATLAB Code

- y = [48.89, ... , 21.76];
- x = [1:146]';
- x1 = sin ((2*pi/52)*x);
- $x^{2} = \cos ((2^{*}pi/52)^{*}x);$
- x3 = sin ((4*pi/52)*x);
- x4 = cos ((4*pi/52)*x);
- x5 = ones (146,1);

- Lists 146 energy prices corresponding to each week after Jan 1st 2017
- x from 1 to 146 (representing each week starting Jan 01 2017
- [sin(x)]
- → [cos(x)]
- → [sin(2x)]
- → [cos(2x)]

⇒

[column of ones for constant]

→ As the prices cycle every 52 weeks (annually) the inside of sine & cosine must be x/52 so the curve fit matches this annual cycle.

MATLAB Code

X = [x1, x2, x3, x4, x5];

coefficients = (X'*X) (X'*y)

graph = X * coefficients;

plot (x, graph, 'linewidth', 1.5)

hold on scatter (x,y)

- Create new variable, X, containing 1,sin(x),cos(x),sin(2x),cos(2x)
- Matrix division to find coefficients (A,B,C,D,E)
 - graph corresponds to the y values of the approximation graph

Plots x values (0-146) against the graph to produce the sin/cosine curve fit *Graph function (not important)*Plots the actual values from the data

MATLAB Code + Results

xlabel('Weeks starting Jan 2017'); → ylabel('Energy price'); →

Labelling the graph

Labelling the graph

Coefficients we got from the equation were: A = 36.5435

B = -0.1416

C = 14.9648

D = 1.1266

F = 7.7712

Curve Fit Found: y = 36.5435 - 0.1416*sin(x) + 14.9648*cos(x) + 1.1266*sin(2x) + 7.7712*cos(2x)

Best Fit Plot (Smoothing Curve)

Plot over the course of January 2017

until October 2019 with a new data

point for each week

Data Trends and Observations

Drastic Increase in Winter Months

 Increase may be associated with high use of heating appliances and shorter days (more lighting usages)

Slight Increase in Summer Months

• Increase may be associated with use of air conditioning

*graph on right only focused on the first year

