Your name:
Instructor (please circle): Alex Barnett Naomi Tanabe

Math 22 Fall 2016, Midterm 2, Wed Oct 26

Please show your work. No credit is given for solutions without work or justification.

1. [8 points] Compute the determinants of the matrices in (a) and (b) (in each case there is a way that is quite quick).
(a) $\left[\begin{array}{cccc}0 & 0 & 0 & 1 \\ 0 & 2 & 0 & 3 \\ 1 & -7 & 2 & 5 \\ 4 & 9 & 3 & 1\end{array}\right]$
(b) $\left[\begin{array}{lll}1 & 1 & 1 \\ 2 & 2 & 5 \\ 3 & 5 & 4\end{array}\right]$
(c) Explain why if A is a 3×3 matrix, $\operatorname{det} A=\operatorname{det} A^{T}$.
2. [9 points] Let $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$.
(a) Find (and simplify) the characteristic polynomial for A.
(b) Find the eigenvalues of A with their multiplicities. For each, give a basis for its eigenspace.
(c) Evaluate $A^{4}\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$.
3. [9 points] Define the set of vectors $H=\left\{\left[\begin{array}{c}a+b+2 c \\ -b-c \\ 2 a+b+3 c\end{array}\right]: \quad a, b, c\right.$ real $\}$.
(a) Explain why H is a vector space (you may use results from class).
(b) Find a basis for H.
(c) Is $H=\mathbb{R}^{3}$?
(d) Each vector in H is a linear combination of the linearly independent standard basis vectors $\mathbf{e}_{1}, \mathbf{e}_{2}$ and \mathbf{e}_{3}. Are these vectors a basis for H, and why?
(e) For what p is H isomorphic to \mathbb{R}^{p} ? (no explanation needed here)
4. [8 points]
(a) Is the set $V=\left\{\left[\begin{array}{c}2 a+1 \\ a+1\end{array}\right]: a\right.$ real $\}$ a vector space? Prove your answer.
(b) Let A be any matrix. Then is the set $\operatorname{Nul} A$ a vector space? Prove your answer.
(c) If all solutions to a homogeneous 4×5 linear system are multiples of one nontrivial vector, then must the linear system be consistent whatever constants are chosen for the right-hand side? Explain.

BONUS: Let A be a $m \times n$ matrix with $\operatorname{Nul} A=\mathbb{R}^{n}$. What can you prove about A ?
5. [8 points]
(a) Give the definition of a set of vectors $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ being a basis for a vector space V.
(b) Show that $\mathfrak{B}=\left\{t^{2}+1, t-2, t+3\right\}$ is a basis for \mathbb{P}_{2}.
(c) Let $\mathbf{v}=8 t^{2}-4 t+6$. Find its coordinate vector $[\mathbf{v}]_{\mathfrak{B}}$ relative to \mathfrak{B} in part (b).
6. [8 points] In this question only, no working is needed; just circle T or F .
(a) T / F : Row reduction of a square matrix preserves its eigenvalues.
(b) T / F : If the vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ span a vector space V, then $\operatorname{dim} V=p$.
(c) T / F : If A and B are row-equivalent, then $\operatorname{rank} A=\operatorname{rank} B$.
(d) T / F : If A is an $n \times(n-1)$ matrix and $\operatorname{rank} A=n-2$, then $\operatorname{dim} \operatorname{Nul} A=2$.

For sufficiently small positive ϵ the computer will report the rank of the
(e) T / F : matrix $\left[\begin{array}{cc}1 & 1 \\ 1 & 1+\epsilon\end{array}\right]$ as one.
(f) $\mathrm{T} / \mathrm{F}: \quad \mathbb{R}^{6}$ is a subspace of \mathbb{R}^{7}.
(g) T / F: The matrix $\left[\begin{array}{cc}-7 & -5 \\ 10 & 5\end{array}\right]$ has no real eigenvalues.
(h) T / F : The subset of continuous functions on $[0,1]$ with $\int_{0}^{1} f(t) d t=0$ is a subspace of the set of continuous functions on $[0,1]$.

