§1.3 Classwork

1. Let

$$
A=\left[\begin{array}{rrr}
2 & 0 & 6 \\
-1 & 8 & 5 \\
1 & -2 & 1
\end{array}\right] \quad \text { and } \quad \mathbf{b}=\left[\begin{array}{c}
10 \\
3 \\
3
\end{array}\right] .
$$

§1.3 Classwork

1. Let

$$
A=\left[\begin{array}{rrr}
2 & 0 & 6 \\
-1 & 8 & 5 \\
1 & -2 & 1
\end{array}\right] \quad \text { and } \quad \mathbf{b}=\left[\begin{array}{c}
10 \\
3 \\
3
\end{array}\right]
$$

Let W be the span of the columns of A. Is $\mathbf{b} \in W$?

Classwork

2. Let

$$
\mathbf{a}_{1}=\left[\begin{array}{r}
1 \\
-2 \\
2
\end{array}\right], \mathbf{a}_{2}=\left[\begin{array}{l}
0 \\
5 \\
5
\end{array}\right], \mathbf{a}_{3}=\left[\begin{array}{l}
2 \\
0 \\
8
\end{array}\right], \text { and } \mathbf{b}=\left[\begin{array}{r}
-5 \\
11 \\
7
\end{array}\right] .
$$

Classwork

2. Let

$$
\mathbf{a}_{1}=\left[\begin{array}{r}
1 \\
-2 \\
2
\end{array}\right], \mathbf{a}_{2}=\left[\begin{array}{l}
0 \\
5 \\
5
\end{array}\right], \mathbf{a}_{3}=\left[\begin{array}{l}
2 \\
0 \\
8
\end{array}\right], \text { and } \mathbf{b}=\left[\begin{array}{r}
-5 \\
11 \\
7
\end{array}\right] .
$$

Do there exist scalars $x_{1}, x_{2}, x_{3} \in \mathbb{R}$ such that

$$
x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+x_{3} \mathbf{a}_{3}=\mathbf{b} ?
$$

Classwork

Bonus ($\S 1.3$ \#29, 30). Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ be points in \mathbb{R}^{3} and suppose that for each $j=1, \ldots, k$ there is an object of mass m_{j} located at the point \mathbf{v}_{j}. Let $m=m_{1}+\cdots+m_{k}$ be the sum of all the masses.

Classwork

Bonus ($\S 1.3$ \#29, 30). Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ be points in \mathbb{R}^{3} and suppose that for each $j=1, \ldots, k$ there is an object of mass m_{j} located at the point \mathbf{v}_{j}. Let $m=m_{1}+\cdots+m_{k}$ be the sum of all the masses.
(a) Can you come up with a formula for the location of the center of mass of the system?

Classwork

Bonus ($\left\{1.3\right.$ \#29, 30). Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ be points in \mathbb{R}^{3} and suppose that for each $j=1, \ldots, k$ there is an object of mass m_{j} located at the point \mathbf{v}_{j}. Let $m=m_{1}+\cdots+m_{k}$ be the sum of all the masses.
(a) Can you come up with a formula for the location of the center of mass of the system?

$$
\underline{\mathbf{v}}=\frac{1}{m}\left(m_{1} \mathbf{v}_{1}+\cdots+m_{k} \mathbf{v}_{k}\right)
$$

Classwork

(b) Compute the center of mass of the following system.

Point	Mass
$\mathbf{v}_{1}=(5,-4,3)$	2 g
$\mathbf{v}_{2}=(4,3,-2)$	5 g
$\mathbf{v}_{3}=(-4,-3,-1)$	2 g
$\mathbf{v}_{4}=(-9,8,6)$	1 g

Classwork

(c) Is the center of mass in the span of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$? Why or why not?

