Your name:

Instructor (please circle): Alex Barnett Michael Musty

Math 22 Summer 2017, Final, Sunday Aug 27 / Monday Aug 28

Please show your work. No credit is given for solutions without work or justification.

1. [9 points] Consider the following matrices:

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}, \qquad \qquad B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

(a) Which, if any, of the matrices A, B are invertible?

(b) Which, if any, of the matrices A, B have an eigenspace of dimension 2?

- (c) Which, if any, of the matrices A, B are diagonalizable?
- (d) Diagonalize every diagonalizable matrix from the previous part (i.e. find a diagonal D and invertible P so that the diagonalizable matrix equals PDP^{-1} . Do not compute P^{-1}).

2. [11 points] Consider the following web with three pages and links given by the diagram:

(a) Let A be the stochastic matrix for this web given by the PageRank algorithm (with the usual $\alpha = 1$). Find A, using the ordering a, b, c.

(b) Find the vector of importances for this web. Write this vector as a probability vector.

(c) Find a diagonal matrix D and an invertible matrix P so that $A = PDP^{-1}$. [Do not compute P^{-1} .]

(d) Must the Markov chain for A converge to your answer from (b), regardless of its initial probability vector ? Explain.

3. [7 points] Let
$$A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & -1 & 3 \\ 1 & 0 & 1 \\ 0 & 1 & -2 \end{bmatrix}$$

(a) Find an *orthogonal* basis for Col A.

4. [8 points] Let
$$A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} 0 \\ 1 \\ 4 \end{bmatrix}$.

(a) Solve the inconsistent system $A\mathbf{x} = \mathbf{b}$ in the least-squares sense.

(b) What is the smallest possible value of $||A\mathbf{x} - \mathbf{b}||$ for any $\mathbf{x} \in \mathbb{R}^2$?

(c) Write a matrix whose action on any vector in \mathbb{R}^3 is to orthogonally project it onto $(\operatorname{Col} A)^{\perp}$. [You may use a factored form to avoid writing all 9 entries.]

5. [7 points]

(a) Is
$$W = \left\{ \begin{bmatrix} s \\ t \\ t \end{bmatrix} : s, t \text{ real} \right\}$$
 a vector space? Prove your claim as succinctly as possible.

(b) Every element of the above W is in the span of $\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix} \right\}$. Is this set a basis for W? Explain.

(c) Is the set $H := \{x \in \mathbb{R} : x \ge -1\}$ a vector space? Explain why.

6. [8 points] Short ones.

(a) For what real values of *a* is the matrix $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & a \\ 0 & 1 & a \end{bmatrix}$ invertible?

(b) An engineering problem produces A, a 2017×2019 matrix, and three linearly independent column vectors are known that when multiplied by A give the zero vector. Must there be a right-hand side **b** for which $A\mathbf{x} = \mathbf{b}$ has no solution? Explain.

(c) If a 5 × 5 matrix has characteristic polynomial of the form $-\lambda^3(\lambda^2 + a\lambda + b)$, where $b \neq 0$, what are the possible values for its rank?

7. [9 points]

(a) Let A be an $n \times n$ matrix. Prove that the product of its eigenvalues equals its determinant. [Hint: write its characteristic polynomial two ways.]

(b) Let A be any $m \times n$ matrix. Prove that, if there exists a matrix B such that BA = I, where I is the $n \times n$ identity matrix, then A has linearly independent columns.

(c) Again let A be any $m \times n$ matrix. Prove that if A has linearly independent columns, then there exists a matrix B for which BA = I. [This is the converse of part (b), so together they prove: having L.I. columns is *equivalent* to possessing a "left inverse".]

BONUS: to what property is possessing a "right inverse" equivalent?

- 8. [10 points] Consider the matrix $A = \begin{bmatrix} 1 & 1 \\ 2 & -2 \end{bmatrix}$.
 - (a) What is the maximum $||A\mathbf{x}||$ can have over all of the unit vectors $||\mathbf{x}|| = 1$?

- (b) State a single geometric interpretation of the smallest singular value of A.
- (c) Compute the full singular value decomposition of A (i.e. give U, Σ and V. Choose signs so that the top row of V has positive entries.)

- 9. [11 points] In this question only, no working is needed; just circle T or F.
 - (a) T / F: If A is row-equivalent to B, then $\operatorname{Col} A = \operatorname{Col} B$.
 - (b) T / F: If the linear system $A\mathbf{x} = \mathbf{b}$ has a unique least-squares solution, then \mathbf{b} can be written as a linear combination of the columns of A.
 - (c) T / F: If two vector spaces are isomorphic, they must have the same dimension.
 - (d) T / F: If a matrix A is diagonalizable, then every eigenvalue of A has algebraic multiplicity equal to 1.
 - (e) T / F: The set of continuous functions f(t) on $0 \le t \le 1$ obeying $\int_0^1 f(t)dt = 0$ is a vector space.
 - (f) T / F: Let A be an $n \times n$ matrix. Let $\mathcal{B} = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ be a basis of \mathbb{R}^n consisting of eigenvectors of A. If we apply the Gram-Schmidt algorithm to \mathcal{B} , then the result is an orthogonal basis of \mathbb{R}^n consisting of eigenvectors of A.
 - (g) T / F: The subset $\{1+2t^3, 2+t-3t^2, -t+2t^2-t^3\}$ is a linearly independent subset of \mathbb{P}_3 .
 - (h) T / F: If A is a 5×3 matrix with rank 3, then it is impossible for NulA to have strictly positive dimension.
 - (i) T / F: The zero vector is the only vector in \mathbb{R}^n that satisfies $\|\mathbf{v}\| = \mathbf{v} \cdot \mathbf{v}$.
 - (j) T / F: Whenever A is an orthogonal matrix, so is A^3 .
 - (k) T / F: In \mathbb{R}^3 , the line x = y = 0 and the line x = z = 0 are orthogonal complements.