Your name:
Instructor (please circle): Alex Barnett Michael Musty

Math 22 Summer 2017, Final, Sunday Aug 27 / Monday Aug 28

Please show your work. No credit is given for solutions without work or justification.

1. [9 points] Consider the following matrices:

$$
A=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right], \quad B=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 1 \\
1 & 0 & 0
\end{array}\right]
$$

(a) Which, if any, of the matrices A, B are invertible?
(b) Which, if any, of the matrices A, B have an eigenspace of dimension 2 ?
(c) Which, if any, of the matrices A, B are diagonalizable?
(d) Diagonalize every diagonalizable matrix from the previous part (i.e. find a diagonal D and invertible P so that the diagonalizable matrix equals $P D P^{-1}$. Do not compute P^{-1}).
2. [11 points] Consider the following web with three pages and links given by the diagram:

(a) Let A be the stochastic matrix for this web given by the PageRank algorithm (with the usual $\alpha=1$). Find A, using the ordering a, b, c.
(b) Find the vector of importances for this web. Write this vector as a probability vector.
(c) Find a diagonal matrix D and an invertible matrix P so that $A=P D P^{-1}$. [Do not compute P^{-1}.]
(d) Must the Markov chain for A converge to your answer from (b), regardless of its initial probability vector ? Explain.
3. [7 points] Let $A=\left[\begin{array}{ccc}1 & 1 & 2 \\ 1 & -1 & 3 \\ 1 & 0 & 1 \\ 0 & 1 & -2\end{array}\right]$
(a) Find an orthogonal basis for $\operatorname{Col} A$.
(b) Find the coordinates of the point in $\operatorname{Col} A$ that is closest to the point $\left[\begin{array}{c}0 \\ -2 \\ 5 \\ 4\end{array}\right]$.
4. [8 points] Let $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 1 \\ 1 & 0\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}0 \\ 1 \\ 4\end{array}\right]$.
(a) Solve the inconsistent system $A \mathbf{x}=\mathbf{b}$ in the least-squares sense.
(b) What is the smallest possible value of $\|A \mathbf{x}-\mathbf{b}\|$ for any $\mathbf{x} \in \mathbb{R}^{2}$?
(c) Write a matrix whose action on any vector in \mathbb{R}^{3} is to orthogonally project it onto $(\operatorname{Col} A)^{\perp}$. [You may use a factored form to avoid writing all 9 entries.]
5. [7 points]
(a) Is $W=\left\{\left[\begin{array}{l}s \\ t \\ t\end{array}\right]: s, t\right.$ real $\}$ a vector space? Prove your claim as succinctly as possible.
(b) Every element of the above W is in the span of $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}$. Is this set a basis for W ? Explain.
(c) Is the set $H:=\{x \in \mathbb{R}: x \geq-1\}$ a vector space? Explain why.
6. [8 points] Short ones.
(a) For what real values of a is the matrix $\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 0 & a \\ 0 & 1 & a\end{array}\right]$ invertible?
(b) An engineering problem produces A, a 2017×2019 matrix, and three linearly independent column vectors are known that when multiplied by A give the zero vector. Must there be a right-hand side \mathbf{b} for which $A \mathbf{x}=\mathbf{b}$ has no solution? Explain.
(c) If a 5×5 matrix has characteristic polynomial of the form $-\lambda^{3}\left(\lambda^{2}+a \lambda+b\right)$, where $b \neq 0$, what are the possible values for its rank?
7. [9 points]
(a) Let A be an $n \times n$ matrix. Prove that the product of its eigenvalues equals its determinant. [Hint: write its characteristic polynomial two ways.]
(b) Let A be any $m \times n$ matrix. Prove that, if there exists a matrix B such that $B A=I$, where I is the $n \times n$ identity matrix, then A has linearly independent columns.
(c) Again let A be any $m \times n$ matrix. Prove that if A has linearly independent columns, then there exists a matrix B for which $B A=I$. [This is the converse of part (b), so together they prove: having L.I. columns is equivalent to possessing a "left inverse".]

BONUS: to what property is possessing a "right inverse" equivalent?
8. [10 points] Consider the matrix $A=\left[\begin{array}{cc}1 & 1 \\ 2 & -2\end{array}\right]$.
(a) What is the maximum $\|A \mathbf{x}\|$ can have over all of the unit vectors $\|\mathbf{x}\|=1$?
(b) State a single geometric interpretation of the smallest singular value of A.
(c) Compute the full singular value decomposition of A (i.e. give U, Σ and V. Choose signs so that the top row of V has positive entries.)
9. [11 points] In this question only, no working is needed; just circle T or F.
(a) $\mathrm{T} / \mathrm{F}: \quad$ If A is row-equivalent to B, then $\operatorname{Col} A=\operatorname{Col} B$.
(b) T / F : If the linear system $A \mathbf{x}=\mathbf{b}$ has a unique least-squares solution, then \mathbf{b} can be written as a linear combination of the columns of A.
(c) T / F : If two vector spaces are isomorphic, they must have the same dimension.
(d) T / F : If a matrix A is diagonalizable, then every eigenvalue of A has algebraic multiplicity equal to 1.
(e) T / F : The set of continuous functions $f(t)$ on $0 \leq t \leq 1$ obeying $\int_{0}^{1} f(t) d t=0$ is a vector space.

Let A be an $n \times n$ matrix. Let $\mathcal{B}=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ be a basis of \mathbb{R}^{n} consisting
(f) T / F : of eigenvectors of A. If we apply the Gram-Schmidt algorithm to \mathcal{B}, then the result is an orthogonal basis of \mathbb{R}^{n} consisting of eigenvectors of A.
(g) T / F : The subset $\left\{1+2 t^{3}, 2+t-3 t^{2},-t+2 t^{2}-t^{3}\right\}$ is a linearly independent subset of \mathbb{P}_{3}.
(h) T / F : If A is a 5×3 matrix with rank 3 , then it is impossible for $\operatorname{Nul} A$ to have strictly positive dimension.
(i) T / F : The zero vector is the only vector in \mathbb{R}^{n} that satisfies $\|\mathbf{v}\|=\mathbf{v} \cdot \mathbf{v}$.
(j) T / F : Whenever A is an orthogonal matrix, so is A^{3}.
(k) $\mathrm{T} / \mathrm{F}: \quad$ In \mathbb{R}^{3}, the line $x=y=0$ and the line $x=z=0$ are orthogonal complements.

