Math 22: Final Exam

November 16, 2012, 3pm-6pm

Your name (please print): \qquad

Instructions: This is a closed book, closed notes exam. Use of calculators is not permitted. Unless otherwise stated, you must justify all of your answers to receive credit - please write in complete sentences in a paragraph structure. You may not give or receive any help on this exam and all questions should be directed to Professor Pauls.

You have $\mathbf{3}$ hours to work on all $\mathbf{9}$ problems. Please do all your work in this exam booklet.

The Honor Principle requires that you neither give nor receive any aid on this exam.

Problem	Points	Score
1	10	
2	35	
3	10	
4	10	
5	10	
6	5	
7	10	
8	10	
9	10	
Total	$\mathbf{1 0 0}$	

(1) (10 points) Complete the following definitions - remember, state definitions of the terms, not properties of the terms. To get credit, your answers must make sense as English sentences.
(a) A set of vectors is linearly independent if ...
(b) A map $T: V \rightarrow W$ is a linear transformation of vectors spaces if \ldots
(c) A matrix A is invertible if ...
(d) Let B be an $n \times n$ matrix. Then, a vector \vec{v} is an eigenvector of A if \ldots
(e) A set of vectors $\mathfrak{B}=\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\} \subset V$ is a basis for the vector space V if \ldots
(f) A matrix C is an orthogonal matrix if ...
(g) A a Markov chain is ...
(h) Let D be a square matrix. Then, the characteristic polynomial of D is \ldots
(i) The rank of a matrix is ...
(j) The least squares solution to the matrix equation $A \vec{x}=\vec{b}$ is \ldots
(2) (35 points total, 5 points each) For each question, explain your process and write clearly. All answers must be fully justified, especially answers to yes or no questions.
(a) Let $A_{1}=\left(\begin{array}{cccc}1 & 2 & -4 & -4 \\ 2 & 4 & 0 & 0 \\ 2 & 3 & 2 & 1 \\ -1 & 1 & 3 & 6\end{array}\right)$ and $\vec{b}=\left(\begin{array}{l}5 \\ 2 \\ 5 \\ 5\end{array}\right)$. Find all solutions to the matrix equation $A_{1} \vec{x}=\vec{b}$ or show that no solutions exist.
(b) Let $A_{2}=\left(\begin{array}{ccc}1 & 1 & 1 \\ 2 & 1 & 4 \\ 0 & -1 & 2\end{array}\right)$. Show that the columns of A_{2} are either linearly dependent or linearly independent. What does this say about the dimension of $\operatorname{Col} A$? Does this imply anything about the dimension of $N u l A$? If so, what and why?
(c) Let $A_{3}=\left(\begin{array}{ll}2 & 3 \\ 1 & 5 \\ 4 & 7 \\ 3 & 6\end{array}\right)$. Find a basis for $N u l A_{3}$. What is the rank of A_{3} ? Is A_{3} invertible?
(d) Let $A_{4}=\left(\begin{array}{ccc}3 & -1 & 5 \\ 2 & 1 & 3 \\ 0 & -5 & 1\end{array}\right)$. Find a basis for Row A_{4}. What is the rank of A_{4} ? What is the dimension of Nul A?
(e) Let $A_{5}=\left(\begin{array}{cccc}1 & 0 & -3 & 2 \\ 0 & 1 & -5 & 4 \\ 3 & -2 & 1 & 2\end{array}\right)$. Find a basis for $\operatorname{Col} A_{5}$. What is the rank of A_{5} ?
(f) Let $A_{6}=\left(\begin{array}{ccc}13 & -5 & 2 \\ -5 & 13 & 2 \\ 2 & 2 & 5\end{array}\right)$. Compute the determinant of A_{6}. Is A invertible?
(g) Let $A_{7}=\left(\begin{array}{ccc}\frac{13}{6} & -\frac{5}{6} & \frac{1}{3} \\ -\frac{5}{6} & \frac{13}{6} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{10}{6}\end{array}\right)$. The eigenvalues of this matrix are 1,2 and 3. Find all the eigenvectors of A_{7}. Is A_{7} diagonalizable? If so, give the diagonalization.
(3) (10 points) Let $B=\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$.
(a) Compute the reduced singular value decomposition of B. Does B have a trivial or non-trivial null space? What is the rank of B ?
(b) Find the pseudo-inverse of B.
(4) (10 points) Let Q be an $n \times n$ orthogonal matrix and A an $n \times m$ matrix. Show that A and $Q A$ have the same singular values.
(5) (10 points) Let C be a 3×3 symmetric matrix with orthogonal diagonalization given by $C=P D P^{-1}$ where the columns of P are $\left\{\vec{p}_{1}, \ldots, \overrightarrow{p_{n}}\right\}$ and the nonzero entries of the matrix D are $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{r}>0$ where $r<n$. Let \mathfrak{B} denote the basis of eigenvectors of C.
(a) What is the change of basis matrix from the standard basis to \mathfrak{B} ? What is the change of basis matrix from \mathfrak{B} to the standard basis (do not just state this as an inverse of another matrix)?
(b) What is $[C]_{\mathfrak{B}}$? Justify your answer.
(6) (5 points) Let

$$
D=\left(\begin{array}{ccc}
1 & 2 & 2 \\
-1 & 1 & 2 \\
-1 & 0 & 1 \\
1 & 1 & 2
\end{array}\right)
$$

D has a $Q R$ decomposition given by

$$
D=Q R=\left(\begin{array}{ccc}
\frac{1}{2} & \frac{3 \sqrt{5}}{10} & -\frac{\sqrt{6}}{6} \\
-\frac{1}{2} & \frac{3 \sqrt{5}}{10} & 0 \\
-\frac{1}{2} & \frac{\sqrt{5}}{10} & \frac{\sqrt{6}}{6} \\
\frac{1}{2} & \frac{\sqrt{5}}{10} & \frac{\sqrt{6}}{3}
\end{array}\right)\left(\begin{array}{ccc}
2 & 1 & \frac{1}{2} \\
0 & \sqrt{5} & \frac{3 \sqrt{5}}{2} \\
0 & 0 & \frac{\sqrt{6}}{2}
\end{array}\right)
$$

Using the QR factorization, find the least squares solution to $A \vec{x}=\vec{b}$ where

$$
\vec{b}=\left(\begin{array}{c}
2 \\
-3 \\
-2 \\
0
\end{array}\right)
$$

(7) (10 points) Describe and explain the Gram-Schmidt algorithm.
(8) (10 points) Consider the following data series:

x	1	2	3	4	5
y	0	2	1	4	5

Suppose we wish to construct a general linear model of the form $y=\beta_{1} x+\beta_{2} x^{3}$. What is are design matrix, observation vector and parameter vector for this model? Write down the normal equations for this model but do not solve them.
(9) (10 points) Let A be an $m \times n$ matrix. Show that $N u l A$ is a subspace of \mathbb{R}^{n} and that Row A is its orthogonal complement.

This page is for additional work.

This page is for additional work.

This page is for additional work.

