COORDINATE VECTOR WORKSHEET

OCTOBER 13, 2017

Consider the vector $\mathbf{x} \in \mathbb{R}^{2}$, and the bases $\mathscr{E}=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$ and $\mathscr{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$.

What is $[\mathbf{x}]_{\mathscr{E}}$?
What is $[\mathbf{x}]_{\mathscr{B}}$?
Let $[\mathbf{y}]_{\mathscr{E}}=\left[\begin{array}{r}2 \\ -5\end{array}\right]$. What is $[\mathbf{y}]_{\mathscr{B}}$?
Let $[\mathbf{y}]_{\mathscr{B}}=\left[\begin{array}{r}3 \\ -1\end{array}\right]$. What is $[\mathbf{y}]_{\mathscr{E}}$?

Compute $\mathscr{E}_{\mathscr{E}}[\mathrm{id}]_{\mathscr{B}}$ and $\mathscr{B}[\mathrm{id}]_{\mathscr{E}}$.

Relate $[\mathbf{x}]_{\mathscr{B}},[\mathbf{x}]_{\mathscr{E}},[\mathbf{y}]_{\mathscr{B}},[\mathbf{y}]_{\mathscr{E}}$ using the above change of basis matrices.

