SINGULAR VALUE DECOMPOSITION WORKSHEET

NOVEMBER 10, 2017

1. Compute an SVD of $A=\left(\begin{array}{rr}3 & 2 \\ 2 & 3 \\ 2 & -2\end{array}\right)$.
2. Use your answer to the previous question to find an SVD for A^{T} without having to recompute the decomposition from scratch.
3. (a) Show that if \mathbf{v} is an eigenvector of $A^{T} A$ and $A \mathbf{v} \neq \mathbf{0}$, then $A \mathbf{v}$ is an eigenvector of $A A^{T}$ with the same eigenvalue.
(b) Show that if \mathbf{u} is an eigenvector of $A A^{T}$ and $A^{T} \mathbf{u} \neq \mathbf{0}$, then $A^{T} \mathbf{u}$ is an eigenvector of $A^{T} A$ with the same eigenvalue.
(c) Conclude that $A^{T} A$ and $A A^{T}$ have the same nonzero eigenvalues.
