SINGULAR VALUE DECOMPOSITION WORKSHEET

NOVEMBER 10, 2017

1. Compute an SVD of
$$A = \begin{pmatrix} 3 & 2 \\ 2 & 3 \\ 2 & -2 \end{pmatrix}$$
.

2. Use your answer to the previous question to find an SVD for A^T without having to recompute the decomposition from scratch.

3. (a) Show that if **v** is an eigenvector of $A^T A$ and $A\mathbf{v} \neq \mathbf{0}$, then $A\mathbf{v}$ is an eigenvector of AA^T with the same eigenvalue.

(b) Show that if **u** is an eigenvector of AA^T and $A^T\mathbf{u} \neq \mathbf{0}$, then $A^T\mathbf{u}$ is an eigenvector of A^TA with the same eigenvalue.

(c) Conclude that $A^T A$ and $A A^T$ have the same nonzero eigenvalues.