ORTHOGONAL DIAGONALIZATION WORKSHEET

NOVEMBER 8, 2017

1. Let $A=\left(\begin{array}{ll}5 & 3 \\ 3 & 5\end{array}\right)$.
(a) Orthogonally diagonalize A.
(b) Construct a spectral decomposition for A.
2. Let A be a real symmetric matrix. Suppose that $\mathbf{x} \in \mathbb{C}^{n}$ is an eigenvector of A with corresponding eigenvalue λ. (Note that \mathbf{x} is a complex vector and λ is a complex number.)
(a) Express $\overline{\mathbf{x}}^{T} A \mathbf{x}$ in terms of λ, \mathbf{x}, and $\overline{\mathbf{x}}$.
(b) Express $\mathbf{x}^{T} \overline{A \mathbf{x}}$ in terms of λ, \mathbf{x}, and $\overline{\mathbf{x}}$.
(c) Show that $\overline{\overline{\mathbf{x}}^{T} A \mathbf{x}}=\overline{\mathbf{x}}^{T} A \mathbf{x}$.
(d) Show that $\bar{\lambda}=\lambda$ and conclude that λ is real.
