ORTHOGONAL PROJECTIONS WORKSHEET

NOVEMBER 3, 2017

Suppose we are given data points

$$
\left(x_{1}, y_{1}\right)=(-3,1), \quad\left(x_{2}, y_{2}\right)=(-2,2), \quad\left(x_{3}, y_{3}\right)=(1,0), \quad\left(x_{4}, y_{4}\right)=(4,3)
$$

In this problem, you will find the least-squares regression line (sometimes called the line of best fit) for this data. The goal is determine values of m and b such that the line $y=$ $m x+b$ best approximates the data.
(a) Let

$$
A=\left(\begin{array}{ll}
x_{1} & 1 \\
x_{2} & 1 \\
x_{3} & 1 \\
x_{4} & 1
\end{array}\right), \quad \mathbf{x}=\binom{m}{b}, \quad \text { and } \quad \mathbf{y}=\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4}
\end{array}\right)
$$

Show that the system $A \mathbf{x}=\mathbf{y}$ is inconsistent.
(b) Show that the columns of A form an orthogonal basis for $\operatorname{Col}(A)$.
(c) Compute the projection $\widehat{\mathbf{y}}=\operatorname{proj}_{\operatorname{Col}(A)}(\mathbf{y})$.
(d) Find a solution to the system $A \widehat{\mathbf{x}}=\widehat{\mathbf{y}}$. (Hint: You shouldn't have to row reduce! Use your calculations from the previous part.)
(e) Compute the distance $\|A \widehat{\mathbf{x}}-\mathbf{y}\|$.
(f) Plot the data points and your line on the grid below. (Hint: Your line should pass through the point $\left(x_{1}, y_{1}\right)$.)

(g) Explain why the values of m and b computed in part (c) minimize the sum

$$
\sum_{i=1}^{4}\left(y_{i}-\left(m x_{i}+b\right)\right)^{2}
$$

of the squared residuals. It is in this sense that the line $y=m x+b$ is the line of best fit for the data.

