ORTHOGONAL SETS WORKSHEET

NOVEMBER 1, 2017

Let

$$
\mathbf{v}_{1}=\left[\begin{array}{r}
2 \\
1 \\
-2
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{r}
-1 \\
4 \\
1
\end{array}\right]
$$

(a) Show that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is an orthogonal basis for W.
(b) Let $\mathbf{y}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$. Without row-reducing, find the coordinates of \mathbf{y} with respect to the basis $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$. That is, find $c_{1}, c_{2}, c_{3} \in \mathbb{R}$ so that $\mathbf{y}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+c_{3} \mathbf{v}_{3}$.
(c) Compute the orthogonal projection of \mathbf{y} onto $\mathbf{v}_{\mathbf{2}}$.
(d) What is the shortest distance from \mathbf{y} to $\operatorname{span}\left\{\mathbf{v}_{2}\right\}$?

