ORTHOGONAL SETS WORKSHEET

NOVEMBER 1, 2017

Let

$$\mathbf{v}_1 = \begin{bmatrix} 2\\1\\-2 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} -1\\4\\1 \end{bmatrix}.$$

(a) Show that $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is an orthogonal basis for *W*.

(b) Let $\mathbf{y} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$. Without row-reducing, find the coordinates of \mathbf{y} with respect to the basis $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$. That is, find $c_1, c_2, c_3 \in \mathbb{R}$ so that $\mathbf{y} = c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + c_3\mathbf{v}_3$.

(c) Compute the orthogonal projection of \mathbf{y} onto \mathbf{v}_2 .

(d) What is the shortest distance from y to $\text{span}\{v_2\}?$