EIGENVECTORS AND EIGENVALUES WORKSHEET

OCTOBER 23, 2017

1. (a) Is $\binom{2}{1}$ an eigenvector of $A=\left(\begin{array}{rr}2 & -12 \\ -3 & 2\end{array}\right)$?
(b) Is $\lambda=3$ an eigenvalue of A ?
(c) Without computing A^{2}, what is $A^{2} \mathbf{x}$? What is $A^{k} \mathbf{x}$ for any k ?
2. Let

$$
B=\left(\begin{array}{lll}
4 & 0 & -2 \\
8 & 2 & -8 \\
4 & 0 & -2
\end{array}\right)
$$

and suppose we are given that $\lambda=2$ is an eigenvalue of B. Find a basis for the corresponding eigenspace. What is its dimension?
3. Let $A=\left(\begin{array}{cc}2 & 3 \\ 3 & -6\end{array}\right)$. Compute $\operatorname{det}\left(A-\lambda I_{2}\right)$. (Your answer will be in terms of λ.) For which values of λ is this 0 ?

