CHANGE OF BASIS WORKSHEET

OCTOBER 20, 2017

Let *V* be an *n*-dimensional vector space and $\mathcal{B} = {\mathbf{b}_1, ..., \mathbf{b}_n}$ and $\mathcal{C} = {\mathbf{c}_1, ..., \mathbf{c}_n}$ be bases for *V*. The following exercises will walk you through a proof of Theorem 15.

(1) (a) Given $\mathbf{v} \in V$, why can we find scalars x_1, \ldots, x_n such that

$$\mathbf{v} = x_1 \mathbf{b}_1 + \dots + x_n \mathbf{b}_n ?$$

(b) Apply the coordinate mapping $\varphi_{\mathcal{C}} = [\]_{\mathcal{C}}$ to both sides of the above equation. What does this yield? What property of $\varphi_{\mathcal{C}}$ are you using?

(c) Rewrite your answer from the previous part as a matrix product involving $_{\mathcal{C}}[id]_{\mathcal{B}}$.

(d) Explain how the above steps prove that $_{\mathcal{C}}[id]_{\mathcal{B}}$ satisfies the property stated in Theorem 15.

- (2) Suppose *Q* is a matrix such that $[\mathbf{v}]_{\mathcal{C}} = Q[\mathbf{v}]_{\mathcal{B}}$ for all $\mathbf{v} \in V$.
 - (a) Substitute $\mathbf{v} = \mathbf{b}_1$ in the above equation. What does this tell you about the first column of *Q*? Similarly, what does substituting $\mathbf{b}_2, \ldots, \mathbf{b}_n$ for \mathbf{v} yield?

(b) Why does this prove the uniqueness statement in Theorem 15?

(3) Consider the ellipse *E* given by the equation $\frac{5}{4}x^2 - \frac{\sqrt{3}}{2}xy + \frac{7}{4}y^2 = 1$, where the points $\begin{pmatrix} x \\ y \end{pmatrix} = x\mathbf{e}_1 + y\mathbf{e}_2$ are written with respect to the standard basis for \mathbb{R}^2 . The major and minor axes of *E* form an angle of 30° with the coordinate axes.

In this problem, you will find a change of basis that yields a simpler equation for *E*.

(a) Let \mathcal{B} be the basis consisting of unit vectors parallel to the major and minor axes of the ellipse. Compute the change of basis matrix $\mathcal{E}[id]_{\mathcal{B}}$.

(b) Given a point $\mathbf{p} \in \mathbb{R}^2$, write $\begin{pmatrix} u \\ v \end{pmatrix}$ for the \mathcal{B} -coordinate vector of \mathbf{p} . Use $\mathcal{E}[\mathrm{id}]_{\mathcal{B}}$ to express *x* and *y* in terms of *u* and *v*.

(c) Substitute the expressions for *x* and *y* found in the previous part into the equation for *E*. What is the resulting equation for *E* with respect to these new coordinates?

