RANK-NULLITY WORKSHEET

OCTOBER 18, 2017

(1) Let

$$
A=\left(\begin{array}{rrrr}
1 & 2 & 1 & 0 \\
-1 & -2 & 2 & 3 \\
0 & 0 & 5 & 5
\end{array}\right)
$$

(a) Find a basis for $\operatorname{Col}(A)$. What is $\operatorname{rank}(A)$?
(b) Find a basis for $\operatorname{Nul}(A)$. What is nullity (A) ?
(c) Note that A is a 3×4 matrix and $\operatorname{rank}(A)+\operatorname{nullity}(A)=4$. Can you explain why $\operatorname{rank}(B)+\operatorname{nullity}(B)=n$ for every $m \times n$ matrix B ? (Hint: Think about $\operatorname{rank}(B)$ and nullity (B) in terms of pivots.)
(2) (a) With A as defined in the previous problem, find a basis of $\operatorname{Row}(A)$.
(b) Note that $\operatorname{dim}(\operatorname{Col}(A))=\operatorname{dim}(\operatorname{Row}(A))$. Do you think this equality holds for every matrix? Why or why not? (Hint: Think about pivots.)

