## BASIS WORKSHEET

OCTOBER 11, 2017
(1) Consider the following lemma.

Lemma. Suppose $A$ and $B$ are $m \times n$ matrices such that $A=P B$ for some invertible matrix $P$. Then $A \mathbf{x}=\mathbf{0}$ iff $B \mathbf{x}=\mathbf{0}$ for any vector $\mathbf{x} \in \mathbb{R}^{n}$.

Prove the lemma as follows.
(a) Suppose $\mathbf{x} \in \mathbb{R}^{n}$ with $B \mathbf{x}=\mathbf{0}$. Show that $A \mathbf{x}=\mathbf{0}$.
(b) Conversely, suppose $\mathbf{x} \in \mathbb{R}^{n}$ with $A \mathbf{x}=\mathbf{0}$. Show that $B \mathbf{x}=\mathbf{0}$. (Hint: Use $P^{-1}$.)
(2) Let

$$
A=\left(\begin{array}{rrrr}
1 & -2 & 2 & 6 \\
-2 & 4 & -3 & -9 \\
3 & -6 & 3 & 9
\end{array}\right)
$$

(a) Compute a basis for $\operatorname{Nul}(A)$.
(b) Compute a basis for $\operatorname{Col}(A)$.
(3) Show that the columns of the following matrix form a basis for $\mathbb{R}^{3}$. (Hint: Show that $A$ is invertible.)

$$
A=\left[\begin{array}{rrr}
1 & 2 & 1 \\
-2 & -4 & -6 \\
1 & 1 & 4
\end{array}\right]
$$

